首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The purposes of this study are: to apply the ARCS model in designing an acid and bases unit, and to assess a single class of 11th graders for motivation and achievement outcomes before and after ARCS instruction. Four essential strategies for designing motivation instruction in the ARCS model were: Attention, Relevance, Confidence, and Satisfaction. We used the ARCS model in designing a 10-hour acids and bases lesson for one class of 11th graders with low interest and motivation in chemistry learning. Both the Students' Motivation toward Science Learning questionnaire (SMTSL) (Tuan, Chin & Shieh, in press) and a teacher-designed achievement test were implemented before and after instruction. In addition, students' self-reporting on time engagement in learning before and during the instruction was also collected. The results of the study indicated that both students' motivation and achievement in the acids and bases unit increased significantly (p<0.05) after the ARCS instruction. Students' time engagement during the ARCS lessons had increased from before. Findings of the study showed that using the ARCS model to teach acids and bases unit could improve low motivated students' level of motivation and achievement. The implications for chemistry teaching will be discussed in the paper.  相似文献   

2.
The purpose of this study was to explore the effectiveness of the creative inquiry-based science teaching on students’ creative science thinking and science inquiry performance. A quasi-experimental design consisting one experimental group (N?=?20) and one comparison group (N?= 24) with pretest and post-test was conducted. The framework of the intervention focused on potential strategies such as promoting divergent and convergent thinking and providing an open, inquiry-based learning environment that are recommended by the literature. Results revealed that the experimental group students outperformed their counterparts in the comparison group on the performances of science inquiry and convergent thinking. Additional qualitative data analyses from classroom observations and case teacher interviews identified supportive teaching strategies (e.g. facilitating associative thinking, sharing impressive ideas, encouraging evidence-based conclusions, and reviewing and commenting on group presentations) for developing students’ creative science thinking.  相似文献   

3.
This study investigates the potential of enhancing students' learning of difficult science concepts by exploring the interaction between teachers' four different instructional approaches and students' four different learning preference styles. Students' immediate performance and their retention for learning of buoyancy concepts serve to examine the effects, using the concept of “buoyancy,” which has been classified as a difficult concept because it is at a higher hierarchical level and involves the understanding of both matter and process. Results indicate that students' post-test scores were significantly affected by both the types of instruction and students' learning preference styles; while students' retention test scores were significantly affected by the types of instructions. Moreover, this study does not support that matching teaching style with students' learning preference would make students' learning more effective. Nevertheless, because procedural learning preference styles (QB-learning preference) students performed better on the retention test than other learning preference styles students, it indicates the possibility that procedural learners are more efficient than others for learning such higher hierarchical and difficult concepts, regardless of the types of instruction students receive.  相似文献   

4.
Dilemmas of Teaching Inquiry in Elementary Science Methods   总被引:2,自引:0,他引:2  
Because various definitions of inquiry exist in the science education literature and in classroom practice, elementary science methods students and instructors face dilemmas during the study of inquiry. Using field notes, instructor anecdotal notes, student products, and course artifacts, science methods course instructors created fictional journal entries to represent the experiences of both the instructors and students during instruction on inquiry. Identified dilemmas were varying definitions of inquiry, the struggle to provide sufficient inquiry-based science-learning experiences, perceived time constraints, determining how much course time should be slated for science instruction versus pedagogy instruction, instructors' and students' lack of inquiry-based learning experiences, grade versus trust issues, and students' science phobia. Instructors' attempts at dealing with these dilemmas included using analogies, increased field-experience time, modeling, and detailed rubrics.  相似文献   

5.
ABSTRACT

Background: As inquiry-based instruction is not universally implemented in science classrooms, it is crucial to introduce instructional strategies through the use of contextualized learning activities to allow students with different background knowledge and abilities to learn the essential competencies of scientific inquiry and promote their emotional perception and engagement.

Purpose: This study explores how essential scientific competencies of inquiry can be integrated into classroom teaching practices and investigates both typical and gifted secondary students’ emotional perception and engagement in learning activities.

Sample: A case teacher along with 226 typical and 18 gifted students from a suburban secondary school at Taiwan participated in this study.

Design and methods: After attending twelve 3-hour professional development workshops that focused on scientific inquiry teaching, the case teacher voluntarily developed and elaborated her own teaching activities through the discussions and feedback that she received from workshop participants and science educators. Quantitative and qualitative data were collected through activity worksheet, questionnaire, video camera, and tape recorders. Frequency distribution, Mann-Whitney U test, and discourse analysis were used for data analyses.

Results: Case teacher’s teaching activities provide contextual investigations that allow students to practice making hypotheses, planning investigations, and presenting and evaluating findings. Students’ learning outcomes reveal that typical students can engage in inquiry-based learning with positive emotional perception as well as gifted students regardless of their ability level. Both gifted and typical students’ positive emotional perception of and active engagement in learning provide fresh insight into feasible instructions for teachers who are interested in inquiry-based teaching but have little available time to implement such instructions into their classrooms.

Conclusions: The results of our work begin to address the critical issues of inquiry-based teaching by providing an exemplary teaching unit encompassing essential scientific competencies  相似文献   

6.
This paper presents the findings from a randomized control trial study of reading/literacy-integrated science inquiry intervention after 1 year of implementation and the treatment effect on 5th-grade low-socio-economic African-American and Hispanic students’ achievement in science and English reading. A total of 94 treatment students and 194 comparison students from four randomized intermediate schools participated in the current project. The intervention consisted of ongoing professional development and specific instructional science lessons with inquiry-based learning, direct and explicit vocabulary instruction, and integration of reading and writing. Results suggested that (a) there was a significantly positive treatment effect as reflected in students' higher performance in district-wide curriculum-based tests of science and reading and standardized tests of science, reading, and English reading fluency; (b) males and females did not differ significantly from participating in science inquiry instruction; (c) African-American students had lower chance of sufficiently mastering the science concepts and achieving above the state standards when compared with Hispanic students across gender and condition, and (d) below-poverty African-American females are the most vulnerable group in science learning. Our study confirmed that even a modest amount of literacy integration in inquiry-based science instruction can promote students' science and reading achievement. Therefore, we call for more experimental research that focus on the quality of literacy-integrated science instruction from which middle grade students, particularly low-socio-economic status students, can benefit.  相似文献   

7.
This study examines the relationship between the learning motivation and conceptual change of 127 eighth graders, after they have learned the acid, base, and salt concept in a digital learning context, designed according to the dual‐situated learning model (DSLM). Two instruments—the students’ motivation towards science learning (SMTSL) questionnaire and the acid‐base‐salt concept diagnostic test (CDT)—were used in the study. The questionnaire and the test were given to students in pre‐test, post‐test, and delayed post‐test. Based on their motivation questionnaire scores, 18 students were selected from various scoring ranges for semi‐structural interviews. Results showed that, after experiencing DSLM digital learning, students’ post‐CDT and delay‐CDT scores were significantly higher than pre‐CDT scores (p < 0.001, p < 0.01). Furthermore, Pearson correlation analysis indicated that students’ conceptual change (ΔCDT) was significantly correlated with motivational factors such as self‐efficacy (SE), active learning strategy (ALS), science learning value (SLV), achievement goal (AG), and learning environment stimulation (LES) (p < 0.05). Interviews also supported students’ motivational correlation to ΔCDT, particularly for SE, ALS, and AG.  相似文献   

8.
The purposes of this study were to investigate students’ conceptual learning outcomes and the effect of motivation on students’ conceptual learning outcomes in two different contexts: a Web-based and a classroom-based instruction, which incorporated the Dual Situation Learning Model (DSLM). Nine classes of Grade eight students (N = 190) were involved in the study; five classes participated in a Web-based context and four classes in a regular classroom-based context. The topic covered was chemical reaction. Students’ conceptual change outcomes were assessed using eight two-tier pre/post conceptual tests during the instruction and the reaction rate integrated conceptual test at the end of the instruction. Students’ motivation data were collected in the beginning and during instruction using the items from the Students’ Motivation Toward Science Learning (SMTSL) questionnaire. The data were analyzed using ANOVA, ANCOVA, bivariate correlation, and multiple regression analysis. Findings revealed that students’ motivational factors were correlated significantly with their conceptual learning outcomes in both Web-based and classroom-based science teaching. In the Web-based context, students’ motivation during the Web-based learning played a more important role on students’ conceptual learning outcomes than before learning.  相似文献   

9.
Su Gao  Jian Wang  Zhiyong Zhong 《Compare》2018,48(6):879-895
Abstract

The Chinese government has implemented centralised science curriculum standards to change science teaching from a didactic to inquiry-based approach to support all students in acquiring science literacy. Framed through theoretical perspectives of inquiry-based instruction and cultural pedagogy, this study examined the influence and impact of these reforms on Chinese science teaching and the performance of 8th grade Chinese students in the Inner-Mongolia Autonomous Regions using instruments developed by TIMSS 2007. It revealed that mixed, lecture-based, more inquiry-based and practice-based science teaching approaches were popularly practiced in classrooms, with the mixed-teaching approach being the most popular. While a mixed approach was positively associated with performance, the frequent practice of a more inquiry-based approach had a significant negative relationship. Neither lecture-based nor practiced-based teaching approaches were found to be related to performance. This finding questions the assumption that inquiry-based science teaching is central to improving the science performance of all students in China.  相似文献   

10.
An Inquiry Learning Partnership (ILP) for professional development (PD) was formed between a university, science centre, and two urban school districts to offer 4–6th grade teachers specific science content and pedagogical techniques intended to integrate inquiry-based instruction in elementary classrooms. From pre/post content exams, PD surveys, focus group, and assessment data, teachers increased their science content knowledge, reported implementing inquiry practices in their classrooms and their students experienced modest gains on 5th grade standardized science achievement exams. While some teachers were transferring knowledge/skills gained in professional development to their classrooms, others encountered barriers to implementing PD. These obstacles included limited resources, time constraints, mandated curriculum pacing, language learning, and classroom management issues. Strategies to mitigate these barriers in order to maximize the impact of professional development need to be a priority in professional development reform.  相似文献   

11.
This study compared inquiry and non-inquiry laboratory teaching in terms of students’ perceptions of the classroom learning environment, attitudes toward science, and achievement among middle-school physical science students. Learning environment and attitude scales were found to be valid and related to each other for a sample of 1,434 students in 71 classes. For a subsample of 165 students in 8 classes, inquiry instruction promoted more student cohesiveness than non-inquiry instruction (effect size of one-third of a standard deviation), and inquiry-based laboratory activities were found to be differentially effective for male and female students.  相似文献   

12.
ABSTRACT

This study investigates the discrete effects of inquiry-based instructional practices that described the PISA 2015 construct ‘inquiry-based instruction’ and how each practice, and the frequency of each practice, is related to science achievement across 69 countries. The data for this study were drawn from the PISA 2015 database and analysed using hierarchical linear modelling (HLM). HLMs were estimated to test the contribution of each item to students’ science achievement scores. Some inquiry practices demonstrated a significant, linear, positive relationship to science achievement (particularly items involving contextualising science learning). Two of the negatively associated items (explaining their ideas and doing experiments) were found to have a curvilinear relationship to science achievement. All nine items were dummy coded by the reported frequency of use and an optimum frequency was determined using the categorical model and by calculating the inflection point of the curvilinear associations in the previous model e.g. students that carry out experiments in the lab in some lessons have higher achievement scores than students who perform experiments in all lessons. These findings, accompanied by detailed analyses of the items and their relationships to science outcomes, give stakeholders clear guidance regarding the effective use of inquiry-based approaches in the classroom.  相似文献   

13.
In the Budding Science and Literacy project, we explored how working with an integrated inquiry-based science and literacy approach may challenge and support the teaching and learning of science at the classroom level. By studying the inter-relationship between multiple learning modalities and phases of inquiry, we wished to illuminate possible dynamics between science inquiry and literacy in an integrated science approach. Six teachers and their students were recruited from a professional development course for the current classroom study. The teachers were to try out the Budding Science teaching model. This paper presents an overall video analysis of our material demonstrating variations and patterns of inquiry-based science and literacy activities. Our analysis revealed that multiple learning modalities (read it, write it, do it, and talk it) are used in the integrated approach; oral activities dominate. The inquiry phases shifted throughout the students' investigations, but the consolidating phases of discussion and communication were given less space. The data phase of inquiry seems essential as a driving force for engaging in science learning in consolidating situations. The multiple learning modalities were integrated in all inquiry phases, but to a greater extent in preparation and data. Our results indicate that literacy activities embedded in science inquiry provide support for teaching and learning science; however, the greatest challenge for teachers is to find the time and courage to exploit the discussion and communication phases to consolidate the students' conceptual learning.  相似文献   

14.
The purpose of this study was to develop a questionnaire that measures students' motivation toward science learning (SMTSL). Six scales were developed: self‐efficacy, active learning strategies, science learning value, performance goal, achievement goal, and learning environment stimulation. In total, 1407 junior high school students from central Taiwan, varying in grades, sex, and achievements, were selected by stratified random sampling to respond to the questionnaire. The Cronbach alpha for the entire questionnaire was 0.89; for each scale, alpha ranged from 0.70 to 0.89. There were significant correlations (p?<?0.01) of the SMTSL questionnaire with students' science attitudes (r?=?0.41), and with the science achievement test in previous and current semesters (r p?=?0.40 and r c?=?0.41). High motivators and low motivators showed a significant difference (p?<?0.01) on their SMTSL scores. Findings of the study confirmed the validity and reliability of the SMTSL questionnaire. Implications for using the SMTSL questionnaire in research and in class are discussed in the paper.  相似文献   

15.
The science achievement of 226 5th graders from districts that have a kit-based inquiry science curriculum supported by intensive professional development (PD) is compared with data from a group of 173 5th graders from other districts that use nonkit science materials and do not have systematic science PD for teachers. Within the kit-based project, the sample of project teachers is stratified to select teachers with a high number of science PD hours versus those with few hours. While there were no significant differences in the mean total scores for kit-based students with low PD versus high PD teachers, the kit-based classrooms scored significantly higher than students in nonkit classrooms on both the pretest and posttest, though there were significantly more minutes of science instruction in the nonkit classrooms. Finally, nonkit teachers taught more units of shorter length and reported lower levels of preparedness to use reform pedagogical approaches.  相似文献   

16.
In this study we investigated the pedagogical context of whole-class teaching with computer simulations. We examined relations between the attitudes and learning goals of teachers and their students regarding the use of simulations in whole-class teaching, and how teachers implement these simulations in their teaching practices. We observed lessons presented by 24 physics teachers in which they used computer simulations. Students completed questionnaires about the lesson, and each teacher was interviewed afterwards. These three data sources captured implementation by the teacher, and the learning goals and attitudes of students and their teachers regarding teaching with computer simulations. For each teacher, we calculated an Inquiry-Cycle-Score (ICS) based on the occurrence and order of the inquiry activities of predicting, observing and explaining during teaching, and a Student-Response-Rate (SRR) reflecting the level of active student participation. Statistical analyses revealed positive correlations between the inquiry-based character of the teaching approach and students’ attitudes regarding its contribution to their motivation and insight, a negative correlation between the SRR and the ICS, and a positive correlation between teachers’ attitudes about inquiry-based teaching with computer simulations and learning goal congruence between the teacher and his/her students. This means that active student participation is likely to be lower when the instruction more closely resembles the inquiry cycle, and that teachers with a positive attitude about inquiry-based teaching with computer simulations realize the importance of learning goal congruence.  相似文献   

17.
The assumption that inquiry-based instruction is more effective in influencing student science achievement than traditional didactic teaching has been the driving force of science education reform in recent decades and in many countries. However, the empirical relationship between these two kinds of science teaching and student science performance is not soundly established, which is worth a careful examination. Framed through the theoretical perspectives of inquiry-based instruction and culturally relevant pedagogy, using a two-level hierarchical linear modeling (HLM) approach and simultaneous multiple regression, this study examines the above relationship using the Trends in International Mathematics and Science Study (TIMSS) 2011 8th grade dataset from Singapore, Chinese Taipei, and the US. The study found that for the low-performing students, none of the inquiry-based teaching practice items measured had a significant relationship with the science achievements at any performance levels of students in any country/region except for the case of two inquiry-based teaching practice items that were positively related to Chinese Taipei students’ achievements. No didactic teaching practice items were associated with the Singapore students’ science achievement, three of these practice items were found negatively related to Chinese Taipei students’ science achievement, and one traditional didactic teaching practice was negatively related to the science achievement of U.S. students. However, for medium- and high-performing students, none of these inquiry-based or traditional didactic science-teaching practices were found to be positive predictors of science performance in all three countries/regions. However, in the case of Chinese Taipei, one didactic teaching practice item was negatively related with the medium level performing students’ achievement and two didactic teaching practices were found to hinder high-performing students’ science achievements.  相似文献   

18.

This study is a comparative analysis of 15-year-old students’ scientific literacy, and its association with the instructional strategies that students experience, across six OECD countries that participated in PISA 2015. Across the six countries, the study investigates the efficacy of inquiry-based instruction in science in contrast with two other instructional approaches to teaching secondary science: adaptive and teacher-directed teaching. The analysis shows that students who reported experiencing high frequencies of inquiry strategies in their classrooms consistently evidenced lower levels of scientific literacy across the six countries. Benchmark analysis also showed, common to all six countries, a strongly positive association between the frequency of teacher-directed and adaptive teaching strategies and students’ scientific literacy. Additionally, the study disaggregates PISA’s composite variable representing inquiry-based instruction and shows that different components of inquiry are differentially associated with students’ scientific literacy. We discuss the implications of these analyses for science teacher educators, science teachers, and educational policy makers. In doing so, we add nuance to our understanding of the efficacy of inquiry-based instruction in science, suggesting that some components, as conceptualised and assessed in PISA, seem to suggest greater attention and use, and others more moderated use.

  相似文献   

19.
探究既是科学学习的目标,又是科学学习的方式。它不仅关注学生的动手能力,更关注学生的思维发展。教师应在课堂上通过各种方式促进学生思维的发展,如在观察的基础上了解学生,从而对他们提出质疑,为他们设置挑战,对他们的科学记录内容予以反馈等,所有这些都具有学习性评价的特征。在小学科学课上,如何运用学习性评价来促进学生的探究活动及他们的思维发展是一个非常值得探讨的问题。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号