首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is unknown whether a passive warm-up or an active warm-up performed at an intensity based on lactate thresholds could improve prolonged intermittent-sprint performance either in thermoneutral or hot environmental conditions. To investigate this issue, 11 male athletes performed three trials that consisted of 80 min of intermittent-sprinting performed on a cycle ergometer, preceded by either an active or a passive warm-up. Active warm-up and intermittent-sprint performance were performed in both hot and thermoneutral environmental conditions, while passive warm-up and intermittent-sprint performance were performed in hot conditions only. First sprint performance was also assessed. Results showed no significant interaction effects between any of the trials for total work (J · kg(-1)), work decrement, and power decrement (P = 0.10, P = 0.42, P = 0.10, respectively). While there were no significant differences between trials for work done for first sprint performance (P = 0.22), peak power was significantly higher after passive warm-up compared with active warm-up performed in either thermoneutral (P = 0.03) or in hot conditions (P = 0.02). Results suggest that the main benefits of warm-up for first sprint performance are derived from temperature-related effects. Active warm-up did not impair prolonged intermittent-sprint performance in the heat compared with thermoneutral conditions.  相似文献   

2.
Abstract It is not known if ergogenic effects of caffeine ingestion in athletic groups occur in the sedentary. To investigate this, we used a counterbalanced, double-blind, crossover design to examine the effects of caffeine ingestion (6 mg?·?kg(-1) body-mass) on exercise performance, substrate utilisation and perceived exertion during 30 minutes of self-paced stationary cycling in sedentary men. Participants performed two trials, one week apart, after ingestion of either caffeine or placebo one hour before exercise. Participants were instructed to cycle as quickly as they could during each trial. External work (J?·?kg(-1)) after caffeine ingestion was greater than after placebo (P?=?0.001, effect size [ES]?=?0.3). Further, heart rate, oxygen uptake and energy expenditure during exercise were greater after caffeine ingestion (P?=?0.031, ES?=?0.4; P?=?0.009, ES?=?0.3 and P?=?0.018, ES?=?0.3; respectively), whereas ratings of perceived exertion and respiratory exchange ratio values did not differ between trials (P?=?0.877, ES?=?0.1; P?=?0.760, ES?=?0.1; respectively). The ability to do more exercise after caffeine ingestion, without an accompanying increase in effort sensation, could motivate sedentary men to participate in exercise more often and so reduce adverse effects of inactivity on health.  相似文献   

3.
Abstract

The aims of this study were to determine the reliability of an intermittent-sprint cycling protocol and to determine the efficacy of one practice session on main trials. Eleven men, moderately trained team-sport athletes, completed three visits to the laboratory involving a graded-exercise test and practice session and two trials of a Cycling Intermittent-Sprint Protocol separated by three days. Data for practice and main trials were analysed using typical error of measurement, intra-class correlation and least-products regression to determine reliability. Typical error of measurement (expressed as a coefficient of variation) and intra-class correlation for peak power output from all 20 sprints for trial 1 and trial 2 were 2.9 ± 12.8% (95% confidence interval: 2.0–5.0%) and 0.96 (95% confidence interval: 0.85–0.99), respectively. Typical errors of measurement and intra-class correlation for mean power output for all 20 sprints for trials 1 and 2 were 4.2 ± 11.9% (95% confidence interval: 2.9–7.4%) and 0.90 (95% confidence interval: 0.66–0.97), respectively. The results suggest that peak power output provides a more reliable measure than mean power output. The Cycling Intermittent-Sprint Protocol provides reliable measures of intermittent-sprint performance.  相似文献   

4.
目的:探讨高温环境下混合预冷对男性中长跑运动员体温调节和有氧耐力运动表现的影响。方法:10名男性中长跑运动员随机分为对照组(PC)5人和混合预冷组(MP)5人。2组被试在标准热身后,进行20 min预冷,PC组每5 min摄入1.5 g/kg,共7.5 g/kg的25℃运动饮料,MP组每5 min摄入1.5 g/kg,共7.5 g/kg的5℃运动饮料,并在预冷期间持续使用手部负压冷却设备CoreControlTM。预冷结束后10 min在30℃~31℃的相对湿度为57%的室外标准田径场进行5 km跑步测试。采用独立样本t检验分析5 km测试成绩和出汗率,采用双因素重复测量方差分析在不同时间点测得的核心温度、皮肤温度等数据,用Bonferroni进行两两比较,P<0.05为具有显著性差异。结果:预冷期间,预冷和时间的交互作用对胃肠温度(Tgi),体温(Tb)和生理应激指数(PSI)具有显著性差异(P<0.001,ES=2.96;P<0.001,ES=2.41;P=0.001,ES=1.6),预冷结束时MP与PC的Tgi,PSI具有显著性差异(P=0.003,P=0.001)。预冷和时间的交互作用对皮肤温度(Tsk),热量储存(HS),心率(HR)无显著性差异(P=0.975,P=0.263,P=0.071)。5 km测试期间,预冷和时间的交互作用对Tgi、Tsk、Tb、HS、PSI、HR均无显著性差异义(P>0.05),预冷对Tgi、PSI的主效应具有显著性差异(P=0.028,ES=1.68;P=0.013,ES=2.11)。MP与PC的SW无显著性差异(P=0.63)。MP与PC的5 km完成时间具有显著性差异(P=0.035)。结论:高温环境下,预冷摄入冷饮结合手部负压冷却降低运动前的核心温度和生理应激程度,能够在5 km测试期间延缓核心温度升高和生理应激程度,提高有氧耐力运动表现。  相似文献   

5.
Power output and heart rate were monitored for 11 months in one female (V(.)O(2max): 71.5 mL · kg?1 · min?1) and ten male (V(.)O(2max): 66.5 ± 7.1 mL · kg?1 · min?1) cyclists using SRM power-meters to quantify power output and heart rate distributions in an attempt to assess exercise intensity and to relate training variables to performance. In total, 1802 data sets were divided into workout categories according to training goals, and power output and heart rate intensity zones were calculated. The ratio of mean power output to respiratory compensation point power output was calculated as an intensity factor for each training session and for each interval during the training sessions. Variability of power output was calculated as a coefficient of variation. There was no difference in the distribution of power output and heart rate for the total season (P = 0.15). Significant differences were observed during high-intensity workouts (P < 0.001). Performance improvements across the season were related to low-cadence strength workouts (P < 0.05). The intensity factor for intervals was related to performance (P < 0.01). The variability in power output was inversely associated with performance (P < 0.01). Better performance by cyclists was characterized by lower variability in power output and higher exercise intensities during intervals.  相似文献   

6.
In this study, we investigated the impact of a controlled 4-day caffeine withdrawal period on the effect of an acute caffeine dose on endurance exercise performance. Twelve well-trained and familiarized male cyclists, who were caffeine consumers (from coffee and a range of other sources), were recruited for the study. A double-blind placebo-controlled cross-over design was employed, involving four experimental trials. Participants abstained from dietary caffeine sources for 4 days before the trials and ingested capsules (one in the morning and one in the afternoon) containing either placebo or caffeine (1.5 mg · kg(-1) body weight · day(-1)). On day 5, capsules containing placebo or caffeine (3 mg · kg(-1) body weight) were ingested 90 min before completing a time trial, equivalent to one hour of cycling at 75% peak sustainable power output. Hence the study was designed to incorporate placebo-placebo, placebo-caffeine, caffeine-placebo, and caffeine-caffeine conditions. Performance time was significantly improved after acute caffeine ingestion by 1:49 ± 1:41 min (3.0%, P = 0.021) following a withdrawal period (placebo-placebo vs. placebo-caffeine), and by 2:07 ± 1:28 min (3.6%, P = 0.002) following the non-withdrawal period (caffeine-placebo vs. caffeine-caffeine). No significant difference was detected between the two acute caffeine trials (placebo-caffeine vs. caffeine-caffeine). Average heart rate throughout exercise was significantly higher following acute caffeine administration compared with placebo. No differences were observed in ratings of perceived exertion between trials. A 3 mg · kg(-1) dose of caffeine significantly improves exercise performance irrespective of whether a 4-day withdrawal period is imposed on habitual caffeine users.  相似文献   

7.
The purpose of this study was to assess the effects of heavy resistance, explosive resistance, and muscle endurance training on neuromuscular, endurance, and high-intensity running performance in recreational endurance runners. Twenty-seven male runners were divided into one of three groups: heavy resistance, explosive resistance or muscle endurance training. After 6 weeks of preparatory training, the groups underwent an 8-week resistance training programme as a supplement to endurance training. Before and after the 8-week training period, maximal strength (one-repetition maximum), electromyographic activity of the leg extensors, countermovement jump height, maximal speed in the maximal anaerobic running test, maximal endurance performance, maximal oxygen uptake ([V·]O(?max)), and running economy were assessed. Maximal strength improved in the heavy (P = 0.034, effect size ES = 0.38) and explosive resistance training groups (P = 0.003, ES = 0.67) with increases in leg muscle activation (heavy: P = 0.032, ES = 0.38; explosive: P = 0.002, ES = 0.77). Only the heavy resistance training group improved maximal running speed in the maximal anaerobic running test (P = 0.012, ES = 0.52) and jump height (P = 0.006, ES = 0.59). Maximal endurance running performance was improved in all groups (heavy: P = 0.005, ES = 0.56; explosive: P = 0.034, ES = 0.39; muscle endurance: P = 0.001, ES = 0.94), with small though not statistically significant improvements in [V·]O(?max) (heavy: ES = 0.08; explosive: ES = 0.29; muscle endurance: ES = 0.65) and running economy (ES in all groups < 0.08). All three modes of strength training used concurrently with endurance training were effective in improving treadmill running endurance performance. However, both heavy and explosive strength training were beneficial in improving neuromuscular characteristics, and heavy resistance training in particular contributed to improvements in high-intensity running characteristics. Thus, endurance runners should include heavy resistance training in their training programmes to enhance endurance performance, such as improving sprinting ability at the end of a race.  相似文献   

8.
This study examined the effects of combined glucose and sodium bicarbonate ingestion prior to intermittent exercise. Ninemales (mean ± s age 25.4 ± 6.6 years, body mass 78.8 ± 12.0 kg, maximal oxygen uptake (VO2 max)) 47.0 ± 7 ml · kg · min(-1)) undertook 4 × 45 min intermittent cycling trials including 15 × 10 s sprints one hour after ingesting placebo (PLA), glucose (CHO), sodium bicarbonate (NaHCO3) or a combined CHO and NaHCO3 solution (COMB). Post ingestion blood pH (7.45 ± 0.03, 7.46 ± 0.03, 7.32 ± 0.05, 7.32 ± 0.01) and bicarbonate (30.3 ± 2.1, 30.7 ± 1.8, 24.2 ± 1.2, 24.0 ± 1.8 mmol · l(-1)) were greater for NaHCO3 and COMB when compared to PLA and CHO, remaining elevated throughout exercise (main effect for trial; P < 0.05). Blood lactate concentration was greatest throughout exercise for NaHCO3 and COMB (main effect for trial; P < 0.05). Blood glucose concentration was greatest 15 min post-ingestion for CHO followed by COMB, NaHCO3 and PLA (7.13 ± 0.60, 5.58 ± 0.75, 4.51 ± 0.56, 4.46 ± 0.59 mmol · l(-1), respectively; P < 0.05). Gastrointestinal distress was lower during COMB compared to NaHCO3 at 15 min post-ingestion (P < 0.05). No differences were observed for sprint performance between trials (P = 1.00). The results of this study suggest that a combined CHO and NaHCO3 beverage reduced gastrointestinal distress and CHO availability but did not improve performance. Although there was no effect on performance an investigation of the effects in more highly trained individuals may be warranted.  相似文献   

9.
10.
Attenuated performance during intense exercise with limited endogenous carbohydrate (CHO) is well documented. Therefore, this study examined whether caffeine (CAF) mouth rinsing would augment performance during repeated sprint cycling in participants with reduced endogenous CHO. Eight recreationally active males (aged 23?±?2?yr, body mass 84?±?4?kg, stature 178?±?7?cm) participated in this randomized, single-blind, repeated-measures crossover investigation. Following familiarization, participants attended two separate evening glycogen depletion sessions. The following morning, participants completed five, 6?s sprints on a cycle ergometer (separated by 24?s active recovery), with mouth rinsing either (1) a placebo solution or (2) a 2% CAF solution. During a fifth visit, participants completed the sprints without prior glycogen depletion. Repeated-measures ANOVA identified significant main effect of condition (CAF, placebo, and control [P?P?P?P?P?P?相似文献   

11.
The purpose of this study was to compare the effects of two practical precooling techniques (skin cooling vs. skin + core cooling) on cycling time trial performance in warm conditions. Six trained cyclists completed one maximal graded exercise test (VO2(peak) 71.4 +/- 3.2 ml x kg(-1) x min(-1)) and four approximately 40 min laboratory cycling time trials in a heat chamber (34.3 degrees C +/- 1.1 degrees C; 41.2% +/- 3.0% rh) using a fixed-power/variable-power format. Cyclists prepared for the time trial using three techniques administered in a randomised order prior to the warm-up: (1) no cooling (control), (2) cooling jacket for 40 min (jacket) or (3) 30-min water immersion followed by a cooling jacket application for 40 min (combined). Rectal temperature prior to the time trial was 37.8 degrees C +/- 0.1 degrees C in control, similar in jacket (37.8 degrees C +/- 0.3 degrees C) and lower in combined (37.1 degrees C +/- 0.2 degrees C, P < 0.01). Compared with the control trial, time trial performance was not different for jacket precooling (-16 +/- 36 s, -0.7%; P = 0.35) but was faster for combined precooling (-42 +/- 25 s, - .8%; P = 0.009). In conclusion, a practical combined precooling strategy that involves immersion in cool water followed by the use of a cooling jacket can produce decrease in rectal temperature that persist throughout a warm-up and improve laboratory cycling time trial performance in warm conditions.  相似文献   

12.
In this study, we examined thermoregulatory responses to ingestion of separate aliquots of drinks at different temperatures during low-intensity exercise in conditions of moderate heat stress. Eight men cycled at 50% (s = 3) of their peak oxygen uptake (VO2peak) for 90 min (dry bulb temperature: 25.3 degrees C, s = 0.5; relative humidity: 60%, s = 5). Four 400-ml aliquots of flavoured water at 10 degrees C (cold), 37 degrees C (warm) or 50 degrees C (hot) were ingested after 30, 45, 60, and 75 min of exercise. Immediately after the 90 min of exercise, participants cycled at 95% VO2peak to exhaustion to assess exercise capacity. There were no differences between trials in rectal temperature at the end of the 90 min of exercise (cold: 38.11 degrees C, s = 0.30; warm: 38.10 degrees C, s = 0.33; hot: 38.21 degrees C, s = 0.30; P = 0.765). Mean skin temperature between 30 and 90 min tended to be influenced by drink temperature (cold: 34.49 degrees C, s = 0.64; warm: 34.53 degrees C, s = 0.69; hot: 34.71 degrees C, s = 0.48; P = 0.091). Mean heart rate from 30 to 90 min was higher in the hot trial (129 beats . min(-1), s = 7; P < 0.05) than on the cold (124 beats . min(-1), s = 9) and warm trials (126 beats . min(-1), s = 8). Ratings of thermal sensation were higher on the hot trial than on the cold trial at 35 and 50 min (P < 0.05). Exercise capacity was similar between trials (P = 0.963). The heat load and debt induced by periodic drinking resulted in similar body temperatures during low-intensity exercise in conditions of moderate heat stress due to appropriate thermoregulatory reflexes.  相似文献   

13.
FIFA11+热身练习被证明可以有效降低足球运动员运动损伤的发生率,但是其对高水平女子足球运动员竞技表现的效果还需要进一步研究。本研究旨在探究FIFA11+热身练习对女子甲级足球运动员灵敏和下肢爆发力的急性影响。21名我国女子甲级联赛某球队足球运动员自愿参加本次研究。受试者随机先后进行FIFA11+热身练习(初级)和常规热身。热身前、热身后即刻和热身后15 min,受试者进行反应灵敏、反向纵跳和505灵敏测试。FIFA11+热身练习后即刻受试者反应灵敏和反向纵跳显著提升,505灵敏测试成绩无显著变化,但FIFA11+热身和常规热身间无显著差异(P>0.05)。热身后即刻与热身15 min后的急性影响类似,且FIFA11+热身练习和常规热身间无显著差异(P>0.05)。FIFA11+热身练习的平均心率和主观疲劳度显著高于常规热身。FIFA11+热身练习可以提高女子甲级足球运动员反应灵敏和下肢爆发力的急性表现,且这些急性效果可以持续至少15 min。然而,FIFA11+热身练习的这些急性效果似乎并不优于常规热身练习,且还可能会造成更高的生理和主观负荷。  相似文献   

14.
Abstract

The aim of this study was to analyse the pacing strategies adopted by elite male and female marathon runners when setting every world record since 1998. For data analysis, the total distance of the marathon was divided into eight sections of 5?km and a final section of 2.195?km, and the relative average speed of each section was calculated individually. Female athletes maintained similar speeds in the first and second half of the marathon (ES?=?0.22, small effect, p?=?0.705), whereas male athletes increased their speed as the marathon progressed (ES?=?1.18, moderate effect, p?=?0.011). However, no differences were observed between men and women in either the first (ES?=?0.56, small effect, p?=?0.290), or in the second half of the marathon (ES?=?0.60, moderate effect, p?=?0.266). When comparing the women’s world records (1998–2003) vs. men’s records (1998–2018) by sections, we observed differences at the beginning of the race (second section, ES?=?0.89, moderate effect) and at the end (last section, ES?=?0.87, moderate effect). The pace variations during the race were similar between male athletes and that of women with male pacemakers (1.53%?±?0.60 vs. 1.68%?±?0.84, respectively). However, a trend towards higher pace variations during the race in the female records with female pacemakers was observed (2.28%?±?0.95). This study shows how male and female marathon records in the last 20 years have been set using different pacing strategies. While men used a negative strategy (faster finishing), women used a less uniform pacing strategy.  相似文献   

15.
This study examined physiological and performance effects of pre-cooling on medium-fast bowling in the heat. Ten, medium-fast bowlers completed two randomised trials involving either cooling (mixed-methods) or control (no cooling) interventions before a 6-over bowling spell in 31.9±2.1°C and 63.5±9.3% relative humidity. Measures included bowling performance (ball speed, accuracy and run-up speeds), physical characteristics (global positioning system monitoring and counter-movement jump height), physiological (heart rate, core temperature, skin temperature and sweat loss), biochemical (serum concentrations of damage, stress and inflammation) and perceptual variables (perceived exertion and thermal sensation). Mean ball speed (114.5±7.1 vs. 114.1±7.2 km · h(-1); P = 0.63; d = 0.09), accuracy (43.1±10.6 vs. 44.2±12.5 AU; P = 0.76; d = 0.14) and total run-up speed (19.1±4.1 vs. 19.3±3.8 km · h(-1); P = 0.66; d = 0.06) did not differ between pre-cooling and control respectively; however 20-m sprint speed between overs was 5.9±7.3% greater at Over 4 after pre-cooling (P = 0.03; d = 0.75). Pre-cooling reduced skin temperature after the intervention period (P = 0.006; d = 2.28), core temperature and pre-over heart rates throughout (P = 0.01-0.04; d = 0.96-1.74) and sweat loss by 0.4±0.3 kg (P = 0.01; d = 0.34). Mean rating of perceived exertion and thermal sensation were lower during pre-cooling trials (P = 0.004-0.03; d = 0.77-3.13). Despite no observed improvement in bowling performance, pre-cooling maintained between-over sprint speeds and blunted physiological and perceptual demands to ease the thermoregulatory demands of medium-fast bowling in hot conditions.  相似文献   

16.
Abstract

The aims of this study were to: (1) quantify match running performance in 5-min periods to determine if players fatigue or modulate high-intensity running according to a pacing strategy, and (2) examine factors impacting high-intensity running such as score line, match importance and the introduction of substitutes. All players were analysed using a computerised tracking system. Maintaining ‘high’ levels of activity in the first half resulted in a 12% reduction (< 0.01) in the second half for high-intensity running (effect size [ES]: 0.8), while no changes were observed in ‘moderate’ and ‘low’ groups (ES: 0.0–0.2). The ‘high’ group covered less (< 0.01) high-intensity running in the initial 10-min of the second versus first half (ES: 0.6–0.7), but this was not observed in ‘moderate’ and ‘low’ groups (ES: 0.2–0.4). After the most intense periods, players demonstrated an 8% drop in high-intensity running (< 0.05) compared to the match average (ES: 0.2) and this persisted for 5-min before recovering. Players covered similar high-intensity running distances in matches with differing score lines but position-specific trends indicated central defenders covered 17% less (< 0.01) and attackers 15% more high-intensity running during matches that were heavily won versus lost (ES: 0.9). High-intensity running distances were comparable in matches of differing importance, but between-half trends indicated that only declines (< 0.01) occurred in the second half of critical matches (ES: 0.2). Substitutes covered 15% more (< 0.01) high-intensity running versus the same time period when completing a full match (ES: 0.5). The data demonstrate that high-intensity running in the second half is impacted by the activity of the first half and is reduced for 5-min after intense periods. High-intensity running is also influenced by score line and substitutions but not match importance. More research is warranted to establish if fluctuations in match running performance are primarily a consequence of fatigue, pacing or tactical and situational influences.  相似文献   

17.
The aim of this study was to determine whether declines in physical performance in a professional soccer team during match-play were associated with reductions in skill-related performance. Computerized tracking of performance in midfield players (n = 11) showed that total distance and distance covered in high-speed running (>14.4 km · h?1) were greater in the first versus second half of games (both P < 0.001) and in the first versus the final 15 min of play (P < 0.05). Analysis of high-speed running across 5-min periods showed that more distance was covered in the first versus the final game period, and in the peak period of activity compared with the following period and game mean for other periods (all P < 0.05). Analysis of skill-related measures revealed no significant decline between halves, across 15-min intervals or in the 5-min period following that of peak high-speed activity compared with the game mean for other 5-min periods. In contrast, frequencies of passing, ball possessions, and duels were greater in the first 5-min than in the final 5-min period (P < 0.05). Neither physical nor skill-related performance was affected across three consecutive games within a period of ≤7 days. The results suggest that the players were generally able to maintain skill-related performance throughout games and when competing in successive matches within a short time.  相似文献   

18.
The goal of this randomized, double-blind, cross-over study was to assess the acute effects of caffeine ingestion on muscular strength and power, muscular endurance, rate of perceived exertion (RPE), and pain perception (PP) in resistance-trained men. Seventeen volunteers (mean?±?SD: age?=?26?±?6 years, stature?=?182?±?9?cm, body mass?=?84?±?9?kg, resistance training experience?=?7?±?3 years) consumed placebo or 6?mg?kg?1 of anhydrous caffeine 1?h before testing. Muscular power was assessed with seated medicine ball throw and vertical jump exercises, muscular strength with one-repetition maximum (1RM) barbell back squat and bench press exercises, and muscular endurance with repetitions of back squat and bench press exercises (load corresponding to 60% of 1RM) to momentary muscular failure. RPE and PP were assessed immediately after the completion of the back squat and bench press exercises. Compared to placebo, caffeine intake enhanced 1RM back squat performance (+2.8%; effect size [ES]?=?0.19; p?=?.016), which was accompanied by a reduced RPE (+7%; ES?=?0.53; p?=?.037), and seated medicine ball throw performance (+4.3%, ES?=?0.32; p?=?.009). Improvements in 1RM bench press were not noted although there were significant (p?=?.029) decreases in PP related to this exercise when participants ingested caffeine. The results point to an acute benefit of caffeine intake in enhancing lower-body strength, likely due to a decrease in RPE; upper-, but not lower-body power; and no effects on muscular endurance, in resistance-trained men. Individuals competing in events in which strength and power are important performance-related factors may consider taking 6?mg?kg?1 of caffeine pre-training/competition for performance enhancement.  相似文献   

19.
Nine males cycled at 53% (s = 2) of their peak oxygen uptake (VO(2peak)) for 90 min (dry bulb temperature: 25.4 degrees C, s = 0.2; relative humidity: 61%, s = 3). One litre of flavoured water at 10 (cold), 37 (warm) or 50 degrees C (hot) was ingested 30 - 40 min into exercise. Immediately after the 90 min of exercise, participants cycled at 95%VO(2peak) to exhaustion to assess exercise capacity. Rectal and mean skin temperatures and heart rate were recorded. The gradient of rise in rectal temperature was influenced (P < 0.01) by drink temperature. Mean skin temperature was highest in the hot trial (cold trial: 34.2 degrees C, s = 0.5; warm trial: 34.4 degrees C, s = 0.5; hot trial: 34.7 degrees C, s = 0.6; P < 0.01). Significant differences were observed in heart rate (cold trial: 132 beats . min(-1), s = 13; warm trial: 134 beats . min(-1), s = 12; hot trial: 139 beats . min(-1), s = 13; P < 0.05). Exercise capacity was similar between trials (cold trial: 234 s, s = 69; warm trial: 214 s, s = 52; hot trial: 203 s, s = 53; P = 0.562). The heat load and debt induced via drinking resulted in appropriate thermoregulatory reflexes during exercise leading to an observed heat content difference of only 33 kJ instead of the predicted 167 kJ between the cold and hot trials. These results suggest that there may be a role for drink temperature in influencing thermoregulation during exercise.  相似文献   

20.
In this study, we assessed the influence that pre-exercise glucose ingestion of two concentrations has on the physiological responses of paraplegic athletes. Eight men with paraplegia ingested a drink containing 4% (low) or 11% (high) carbohydrate in a randomized double-blind crossover design, 20 min before exercise. The participants performed wheelchair exercise at 65% of peak oxygen uptake for 1 h followed by a 20 min performance test. During both trials, the physiological responses were similar and indicated steady-state exercise. At the onset of exercise, blood glucose concentrations in both trials increased after carbohydrate ingestion (P < 0.05) before returning to resting values after 20 min of exercise and there were no differences between trials. Free fatty acid concentrations increased from rest to 1 h of exercise in both trials, with a greater increase during the low carbohydrate trial that led to a difference in free fatty acids between trials at the end of the 1 h tests (P < 0.05). There was a tendency for the performance distances and power outputs achieved during the high carbohydrate trial to be greater than those achieved during the low carbohydrate trial (P= 0.08). In conclusion, when paraplegic athletes ingested low and high carbohydrate drinks before exercise, the decline in blood glucose concentrations was similar. The tendency for higher blood glucose concentrations, respiratory exchange ratios and power outputs and lower free fatty acid concentrations (P < 0.05) during the high carbohydrate trial suggests that a higher concentration of carbohydrate in a sports drink might be a better choice for paraplegic athletes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号