首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Pulmonary diffusing capacity (Dlco), together with spirometric variables, arterial oxygen tension (paO2) and cardiac output were determined before and at intervals after maximal arm cranking, treadmill running and erogmeter rowing. Independent of the type of exercise, Dlco increased immediately post‐exercise from a median 13.6 (range 7.3–16.3) to 15.1 (9.3–19.6) mmol min‐1 kPa‐1 (P <0.01). However, it decreased to 11.6 (6.9–15.5) mmol min‐1 kPa‐1 (P <0.01) after 24 h with cardiac output and paO2 at resting values, and Dlco normalized after 20 h. Thoracic electrical impedance at 2.5 and 100 kHz increased slightly post‐exercise, indicating a decrease in thoracic fluid balance, and there were no echocardiographic signs of left ventricular failure at the time of the decrease in Dlco. Also, active muscle (limb) circumference and volume, and an increase in haematocrit from 43.8 (38.0–47.0) to 47.1 (42.7–49.8) (P <0.01), had normalized at the time of the decrease in Dlco. Vital capacity, forced vital capacity, forced expiratory volume in 1 s, peak and peak mid‐expiratory flows did not change. However, total lung capacity increased from 6.8 (5.0–7.6) to 7.0 (5.1–7.8) litres (P <0.05) immediately after exercise and remained elevated at 6.9 (5.1–8.7) litres (P <0.05) when a decrease in Dlco was noted. The results demonstrate that independent of the type of maximal exercise, an approximate 15% reduction in Dlco takes place 2–3 h post‐exercise, which normalizes during the following day of recovery.  相似文献   

2.
Respiratory muscle fatigue has been reported following short bouts of high-intensity exercise, and prolonged, moderate-intensity exercise, as evidenced by decrements in inspiratory and expiratory mouth pressures. However, links to functionally relevant outcomes such as breathing effort have been lacking. The present study examined dyspnoea and leg fatigue during a treadmill marathon in nine experienced runners. Maximal inspiratory and expiratory pressure, peak inspiratory and expiratory flow, forced vital capacity, and forced expiratory volume in one second were assessed before, immediately after, and four and 24 hours after a marathon. During the run, leg effort was rated higher than respiratory effort from 18 through 42 km (P < 0.05). Immediately after the marathon, there were significant decreases in maximal inspiratory pressure and peak inspiratory flow (from 118 +/- 20 cm H(2)O and 6.3 +/- 1.4 litres x s(-1) to 100 +/- 22 cm H(2)O and 4.9 +/- 1.5 litres x s(-1) respectively; P < 0.01), while expiratory function remained unchanged. Leg maximum voluntary contraction force was significantly lower post-marathon. Breathing effort correlated significantly with leg fatigue (r = 0.69), but not inspiratory muscle fatigue. Our results confirm that prolonged moderate-intensity exercise induces inspiratory muscle fatigue. Furthermore, they suggest that the relative intensity of inspiratory muscle work during exercise makes some contribution to leg fatigue.  相似文献   

3.
The most commonly used technique for the measurement of pulmonary diffusing capacity (DL) is the single-breath hold technique requiring a 10-s breath-hold after the maximal inspiration of carbon monoxide (0.3% CO) and helium (10% He). To measure pulmonary diffusing capacity in our experiments, we had the added advantage of the use of the Gould Pulmonary Function Laboratory that automates the collection and recording of data and the calibration of equipment for each test. However, this technique, DL(CO), is difficult to use during exercise of moderate or elevated intensity because of the lengthy breath-hold. Thus, the purpose of the present study was to compare DL(CO) with 3-s and 5-s breath-holds to a 10-s breath-hold at rest and during moderate and intense exercise in 14 subjects. As expected, an increase in the DL(CO) was observed during moderate and intense exercise when compared to resting values (45.7 +/- 10.0 and 53.0 +/- 7.6 vs 32.1 +/- 7.7 ml CO min-1 mmHg-1). No difference was observed between values for DL(CO) measured at varying breath-hold times at rest (3 s: 32.9 +/- 7.4; 5 s: 32.0 +/- 7.5; 10 s: 31.4 +/- 8.2 ml CO min-1 mmHg-1) or during moderate exercise (3 s: 45.9 +/- 10.1; 5 s: 45.9 +/- 10.6; 10 s: 45.2 +/- 10.4 ml CO min-1 mmHg-1) or intense exercise (3 s: 52.1 +/- 8.3; 5 s: 54.3 +/- 9.3; 10 s: 52.6 +/- 5.2 ml CO min-1 mmHg-1). Reliability coefficients indicated that the use of a 3-s breath-hold was appropriate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
It has previously been shown that females incur less muscle damage than males after strenuous exercise, but limited data are available for humans. To determine possible differences between the sexes in humans, the response to high-force eccentric exercise was examined in a large sample of women (n = 83) and men (n = 82). The participants performed a bout of eccentric exercise of the elbow flexors consisting of 70 maximal repetitions. Isometric strength, resting elbow angle and muscle soreness were measured before, immediately after (except soreness) and then daily for 7 days after exercise. There was a significant loss in strength among both groups (69% for women and 63% for men) (P < 0.01) immediately after exercise; at 168 h post-exercise, women still had a 27% strength loss and men had a 24% strength loss. No significant difference in strength loss or recovery rate was found between men and women. Soreness reached peak values 32-48 h post-exercise (P < 0.01), with no significant difference between men and women. Range of motion decreased significantly until 3 days after exercise (14.6 degrees or 0.255 rad loss for women; 12.2 degrees or 0.213 rad loss for men) (P < 0.01); at 168 h post-exercise, the women and men still showed a loss of 4.8 degrees (0.084 rad) and 4.0 degrees (0.07 rad), respectively. There was a significant interaction of sex x time (P < 0.01); a post-hoc test indicated that the women experienced a greater loss in range of motion at 72 h than men and this difference was maintained to 168 h post-exercise (P < 0.01). Thus, our results do not support the contention that women have a lower response to eccentric exercise than men.  相似文献   

5.
We tested the hypothesis that exercise-induced muscle damage would increase the ventilatory (V(E)) response to incremental/ramp cycle exercise (lower the gas exchange threshold) without altering the blood lactate profile, thereby dissociating the gas exchange and lactate thresholds. Ten physically active men completed maximal incremental cycle tests before (pre) and 48 h after (post) performing eccentric exercise comprising 100 squats. Pulmonary gas exchange was measured breath-by-breath and fingertip blood sampled at 1-min intervals for determination of blood lactate concentration. The gas exchange threshold occurred at a lower work rate (pre: 136 ± 27 W; post: 105 ± 19 W; P < 0.05) and oxygen uptake (VO(2)) (pre: 1.58 ± 0.26 litres · min(-1); post: 1.41 ± 0.14 litres · min(-1); P < 0.05) after eccentric exercise. However, the lactate threshold occurred at a similar work rate (pre: 161 ± 19 W; post: 158 ± 22 W; P > 0.05) and VO(2) (pre: 1.90 ± 0.20 litres · min(-1); post: 1.88 ± 0.15 litres · min(-1); P > 0.05) after eccentric exercise. These findings demonstrate that exercise-induced muscle damage dissociates the V(E) response to incremental/ramp exercise from the blood lactate response, indicating that V(E) may be controlled by additional or altered neurogenic stimuli following eccentric exercise. Thus, due consideration of prior eccentric exercise should be made when using the gas exchange threshold to provide a non-invasive estimation of the lactate threshold.  相似文献   

6.
This study was performed to determine the influence of single and repetitive exercise on nitric oxide (NO) concentration in the lung. Exhaled NO concentration (FE(NO)) was measured during a constant-flow exhalation manoeuvre (170 ml x s(-1), against a 10 cmH2O resistance) in healthy individuals (a) during and after a 100-min square-wave exercise of between 25 and 60% of maximal power output (n = 18) and (b) before and after five successive prolonged exercises (90-120 min, 75-85% of maximal heart rate) separated by 48 or 24 h (n = 8). The FE(NO0.170) was decreased during and after the 100-min exercise test (mean +/- s(x): 58.5 +/- 3.7% and 76.7 +/- 5.2% of resting value at 90 min of exercise and 15 min post-exercise, respectively; P < 0.05). The five successive exercise sessions induced a similar post-exercise FE(NO0.170) decrement (73.1 +/- 2.9% of resting value 15 min post-exercise), while basal FE(NO0.170) values were not different between the five sessions (P > 0.05). These results suggest that prolonged exercise induces a reduction in NO concentration within the lung that lasts for several minutes after the end of exercise. However, repetitive exercises (at least every 24 h) allow complete NO recovery from one session to another. The implication of such a decrease in NO availability within the lung remains to be clarified.  相似文献   

7.
This study was designed to investigate the effect of ingesting a glucose plus fructose solution on the metabolic responses to soccer-specific exercise in the heat and the impact on subsequent exercise capacity. Eleven male soccer players performed a 90 min soccer-specific protocol on three occasions. Either 3 ml · kg(-1) body mass of a solution containing glucose (1 g · min(-1) glucose) (GLU), or glucose (0.66 g · min(-1)) plus fructose (0.33 g · min(-1)) (MIX) or placebo (PLA) was consumed every 15 minutes. Respiratory measures were undertaken at 15-min intervals, blood samples were drawn at rest, half-time and on completion of the protocol, and muscle glycogen concentration was assessed pre- and post-exercise. Following the soccer-specific protocol the Cunningham and Faulkner test was performed. No significant differences in post-exercise muscle glycogen concentration (PLA, 62.99 ± 8.39 mmol · kg wet weight(-1); GLU 68.62 ± 2.70; mmol · kg wet weight(-1) and MIX 76.63 ± 6.92 mmol · kg wet weight(-1)) or exercise capacity (PLA, 73.62 ± 8.61 s; GLU, 77.11 ± 7.17 s; MIX, 83.04 ± 9.65 s) were observed between treatments (P > 0.05). However, total carbohydrate oxidation was significantly increased during MIX compared with PLA (P < 0.05). These results suggest that when ingested in moderate amounts, the type of carbohydrate does not influence metabolism during soccer-specific intermittent exercise or affect performance capacity after exercise in the heat.  相似文献   

8.
The effect of inspiratory muscle training for 10 min twice a day for 27.5 days was evaluated in 20 human subjects, of whom 10 formed a training group and 10 a sham training group. The maximal oxygen uptake (VO2 max), maximal ventilation, breathing frequency during maximal exercise and the distance run in 12 min on a track were determined in addition to resting peak expiratory flow, forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1), with alveolar oxygen tension (pAO2) during maximal exercise being calculated. Inspiratory muscle training increased maximal inspiratory pressure from 93 (range 38-118) to 110 (65-165) mmHg in the training group (P less than 0.0005), but did not affect VO2 max, ventilation during maximal exercise, peak expiratory flow, FEV1 or FVC. However, breathing frequency during maximal exercise decreased slightly from 56 (44-87) to 53 (38-84) breaths min-1 (P less than 0.05) in the training group only; but the calculated pAO2 did not increase from the pre-training value of 126 (116-132) mmHg. The maximal distance run during 12 min increased similarly in the training and sham training groups by 8% (3-12%) and 6% (2-12%), respectively (P less than 0.01). The results of this study show that inspiratory muscle training resulting in a 32% (0-85%) increase in maximal inspiratory pressure does not change FEV1, FVC, peak expiratory flow, VO2 max or work capacity.  相似文献   

9.
Abstract

We investigated the effects of an acute bout of exercise on serum soluble leptin receptor (sOB-R) concentrations. Eighteen male participants completed two different exercise sessions with intensities of 25% and 65% maximal aerobic capacity (VO2max). In addition to the energy expenditure during exercise sessions being measured, blood samples were collected before exercise, and immediately, at 24 h, and at 48 h post-exercise to analyse sOB-R, leptin and insulin levels. At 24 h post-exercise, sOB-R and leptin concentrations at the 65% VO2max were significantly different from those at the 25% VO2max. Leptin levels at 48 h post-exercise were also significantly lower for the 65% VO2max than for the 25% VO2max (P < 0.01). In the 65% VO2max session, the energy expenditure during exercise was significantly associated with leptin concentrations at 24 h and 48 h and sOB-R concentrations at 24 h post-exercise. However, no correlations were found between sOB-R and leptin at the three post-exercise time points. In conclusion, an acute bout of exercise with 920 kcal of output resulted in an increase in sOB-R levels at 24 h post-exercise. However, the changes in sOB-R levels due to an acute bout of exercise might not contribute to the delayed decrease observed for leptin.  相似文献   

10.
This study investigated gross efficiency changes in a group of 60 adult males (mean age 39.2 +/- 1.2 years) resulting from endurance training and age-related responses to such training in sub-groups (each n = 20) of younger (30.7 +/- 0.7 years), intermediate (38.3 +/- 0.5 years) and older (48.6 +/- 1.1 years) subjects. Gross efficiency (%) was calculated from work output, oxygen consumption and RER energy equivalents following 10 min standard cycle ergometry exercise at 100 W and 50 rev min-1. Measurements were made at pre-, mid- and post-8 months of training, which involved progressive walking/jogging activities designed to enhance endurance capacity. In the total group, VO2 decreased pre- to post-training from 2.15 +/- 0.02 to 1.93 +/- 0.01 1 min-1 (P less than 0.01). In the sub-groups, both the younger and older subjects showed a significantly reduced VO2, from 2.17 +/- 0.01 to 1.98 +/- 0.04 1 min-1 and 2.05 +/- 0.08 to 1.86 +/- 0.03 1 min-1 respectively (P less than 0.05), but no significant changes were noted at mid-training. In the intermediate age subjects, while there were trends towards a reduced VO2, none was significant. The ANOVA revealed increased mean gross efficiency in the total group from pre- (14.3 +/- 0.1%) to post- (15.5 +/- 0.2%) (P less than 0.05) but not at mid-training (14.8 +/- 0.2%). While similar trends were observed in the sub-groups, gross efficiency increases were not significant, although changes in gross efficiency were reflected in VO2. The findings suggest that during standardized exercise, oxygen cost may be reduced and gross efficiency increased in adult males following endurance training and that such changes may take place over a variety of age ranges.  相似文献   

11.
It has previously been shown that females incur less muscle damage than males after strenuous exercise, but limited data are available for humans. To determine possible differences between the sexes in humans, the response to high-force eccentric exercise was examined in a large sample of women (n = 83) and men (n = 82). The participants performed a bout of eccentric exercise of the elbow flexors consisting of 70 maximal repetitions. Isometric strength, resting elbow angle and muscle soreness were measured before, immediately after (except soreness) and then daily for 7 days after exercise. There was a significant loss in strength among both groups (69% for women and 63% for men) (P?0.01) immediately after exercise; at 168 h post-exercise, women still had a 27% strength loss and men had a 24% strength loss. No significant difference in strength loss or recovery rate was found between men and women. Soreness reached peak values 32-48 h post-exercise (P?0.01), with no significant difference between men and women. Range of motion decreased significantly until 3 days after exercise (14.6° or 0.255 rad loss for women; 12.2° or 0.213 rad loss for men) (P?0.01); at 168 h post-exercise, the women and men still showed a loss of 4.8° (0.084 rad) and 4.0° (0.07 rad), respectively. There was a significant interaction of sex x time (P?0.01); a post-hoc test indicated that the women experienced a greater loss in range of motion at 72 h than men and this difference was maintained to 168 h post-exercise (P?0.01). Thus, our results do not support the contention that women have a lower response to eccentric exercise than men.  相似文献   

12.
Endurance running performance in athletes with asthma   总被引:1,自引:0,他引:1  
Laboratory assessment was made during maximal and submaximal exercise on 16 endurance trained male runners with asthma (aged 35 +/- 9 years) (mean +/- S.D.). Eleven of these asthmatic athletes had recent performance times over a half-marathon, which were examined in light of the results from the laboratory tests. The maximum oxygen uptake (VO2max) of the group was 61.8 +/- 6.3 ml kg-1 min-1 and the maximum ventilation (VEmax) was 138.7 +/- 24.7 l min-1. These maximum cardio-respiratory responses to exercise were positively correlated to the degree of airflow obstruction, defined as the forced expiratory volume in 1 s (expressed as a percentage of predicted normal). The half-marathon performance times of 11 of the athletes ranged from those of recreational to elite runners (82.4 +/- 8.8 min, range 69-94). Race pace was correlated with VO2max (r = 0.863, P less than 0.01) but the highest correlation was with the running velocity at a blood lactate concentration of 2 mmol l-1 (r = 0.971, P less than 0.01). The asthmatic athletes utilized 82 +/- 4% VO2max during the half-marathon, which was correlated with the %VO2max at 2 mmol l-1 blood lactate (r = 0.817, P less than 0.01). The results of this study suggest that athletes with mild to moderate asthma can possess high VO2max values and can develop a high degree of endurance fitness, as defined by their ability to sustain a high percentage of VO2max over an endurance race. In athletes with more severe airflow obstruction, the maximum ventilation rate may be reduced and so VO2max may be impaired. The athletes in the present study have adapted to this limitation by being able to sustain a higher %VO2max before the accumulation of blood lactate, which is an advantage during an endurance race. Therefore, with appropriate training and medication, asthmatics can successfully participate in endurance running at a competitive level.  相似文献   

13.
The aim of this study was to analyse the effect of pedalling rate on the pattern of mechanical torque application and on neuromuscular fatigue during prolonged cycling exercise. Eleven well-trained individuals performed three 1-h pedalling sessions, at 50 rev.min-1, 110 rev.min-1 and a freely chosen cadence, at an intensity corresponding to 65% of their maximal aerobic power. The mechanical torque applied on the right pedal was recorded for 30 s every 5 min while pedalling. Contractile and neural properties of the quadriceps and hamstring muscles were analysed before and immediately after each of the three pedalling sessions. The post-exercise reduction in knee extensors maximal voluntary contraction was significant (P<0.01) irrespective of the cadence, but no difference was found between cadences. The use of a particular cadence did not lead to preferentially central or peripheral fatigue. An increase in cadence resulted in greater positive and negative work generated during pedalling. The mechanical pattern was not altered during the exercise, whatever the selected cadence. The present study demonstrates that despite the occurrence of neuromuscular fatigue, trained individuals maintained a stable pedalling pattern throughout an endurance cycling exercise for cadences ranging from 50 to 110 rev.min-1.  相似文献   

14.
Urea production during prolonged swimming   总被引:1,自引:0,他引:1  
Male interscholastic swimmers (n = 8) completed a 4572 m training swim in in 62 +/- 1.1 min (means +/- S.E.) with terminal heart rate and blood lactate of 152 +/- 6 beats min-1 and 6.9 +/- 0.89 mM, respectively. Sweat rate (0.48 +/- 0.095 l. h-1) was lower than similar intensity cycling (1.5 +/- 0.13 l. h-1) or running (1.1 +/- 0.14 l. h-1). Post-swim serum urea N (11.6 +/- 0.71 mM) was elevated (P less than 0.05) vs pre-swim (4.6 +/- 0.39 mM). Post-swim urine volume (860 +/- 75 ml 24 h-1) was reduced (P less than 0.07) and resulted in an elevated (P less than 0.05), but delayed (24-84 h), post-exercise urea N excretion. Although the reduced urine and sweat production during the swim undoubtedly contributed to the elevated serum urea, there must be another explanation because together they could only account for 38% of the observed increase. On the basis of the magnitude of serum urea increase, it appears that the swim caused an increase in urea production (amino acid oxidation). The failure to observe larger increases in urinary urea during recovery indicates that either urea excretion following exercise continues for prolonged periods of time (greater than 48 h) or another significant mode of nitrogen excretion exists.  相似文献   

15.
A high ambient temperature reduces the capacity to perform prolonged exercise. Total carbohydrate oxidation is less, and thus glycogen depletion is not limiting. Fluid ingestion in the heat should, therefore, focus on maintenance of hydration status rather than on substrate provision. Six healthy males cycled to exhaustion at 60% of maximum oxygen consumption (VO2max) with no drink, ingestion of a 15% carbohydrate-electrolyte drink (1.45+/-0.29 litres) or ingestion of a 2% carbohydrate-electrolyte drink (3.12+/-0.47 litres). The ambient temperature was 30.2+/-0.6 degrees C (mean +/- s), with a relative humidity of 71+/-1% and an air speed of approximately 0.7 m x s(-1) on all trials. Weighted mean skin temperature, rectal temperature and heart rate were recorded and venous samples drawn for determination of plasma volume changes, blood metabolites, serum electrolytes and osmolality. Expired gas was collected to estimate rates of fuel oxidation. Exercise capacity was significantly (P < 0.05) different in all trials. The median (range) time to exhaustion was 70.9 min (39.4-97.4 min) in the no-drink trial, 84.0 min (62.7-145 min) in the 15% carbohydrate trial and 118 min (82.6-168 min) in the 2% carbohydrate trial. The 15% carbohydrate drink resulted in significantly (P < 0.05) elevated blood glucose and total carbohydrate oxidation compared with the no-drink trial. The 2% carbohydrate drink restored plasma volume to pre-exercise values by the end of exercise. No differences were observed in other thermoregulatory or cardiorespiratory responses between trials. These results suggest that fluid replacement with a large volume of a dilute carbohydrate drink is beneficial during exercise in the heat, but the precise mechanisms for the improved exercise capacity are unclear.  相似文献   

16.
A high ambient temperature reduces the capacity to perform prolonged exercise. Total carbohydrate oxidation is less, and thus glycogen depletion is not limiting. Fluid ingestion in the heat should, therefore, focus on maintenance of hydration status rather than on substrate provision. Six healthy males cycled to exhaustion at 60% of maximum oxygen consumption (VO 2max ) with no drink, ingestion of a 15% carbohydrate-electrolyte drink (1.45 - 0.29 litres) or ingestion of a 2% carbohydrate-electrolyte drink (3.12 - 0.47 litres). The ambient temperature was 30.2 - 0.6°C (mean - s ), with a relative humidity of 71 - 1% and an air speed of approximately 0.7 m.s -1 on all trials. Weighted mean skin temperature, rectal temperature and heart rate were recorded and venous samples drawn for determination of plasma volume changes, blood metabolites, serum electrolytes and osmolality. Expired gas was collected to estimate rates of fuel oxidation. Exercise capacity was significantly ( P ? 0.05) different in all trials. The median (range) time to exhaustion was 70.9 min (39.4-97.4 min) in the no-drink trial, 84.0 min (62.7-145 min) in the 15% carbohydrate trial and 118 min (82.6-168 min) in the 2% carbohydrate trial. The 15% carbohydrate drink resulted in significantly ( P ? 0.05) elevated blood glucose and total carbohydrate oxidation compared with the no-drink trial. The 2% carbohydrate drink restored plasma volume to pre-exercise values by the end of exercise. No differences were observed in other thermoregulatory or cardiorespiratory responses between trials. These results suggest that fluid replacement with a large volume of a dilute carbohydrate drink is beneficial during exercise in the heat, but the precise mechanisms for the improved exercise capacity are unclear.  相似文献   

17.
The purpose of this study was to determine the effects of the simultaneous use of pyridoxine-alpha-ketoglutarate (PAK) and sodium bicarbonate (NaHCO3) on short-term maximal exercise capacity in eight well-trained male cyclists. The study consisted of the determination of maximal power output and the administration of various combinations of placebos, PAK and NaHCO3, followed by a short-term maximal exercise test. To determine maximal power output (power(max)), the subjects performed a continuous, incremental test on a Monark bicycle ergometer to symptom limited maximum (test 1). To determine the effects of NaHCO3 and PAK on short-term maximal exercise performance, the subjects were administered either placebo (PLA), PAK and sodium bicarbonate (P/B), PAK and placebo (PAK), or sodium bicarbonate and placebo (BIC) prior to performing short-term maximal exercise (test 2). Oral tablets of NaHCO3 and PAK were given in doses of 200 mg kg-1 and 50 mg kg-1 respectively. The subjects pedalled at the power output corresponding to 100% of their VO2 max at 70 rev min-1 until voluntary cessation or until they were unable to maintain pedal revolution rate. Venous blood samples were drawn at rest (RES), cessation of exercise (CES) and after 2 min of recovery (REC) and analysed for lactate, pH and bicarbonate ion concentration. The subjects attained an average maximum power output of 377 +/- 20 W during the graded maximal pre-test (test 1). There were no significant differences between treatments in the ability to sustain power(max) during test 2. During test 2, the subjects were able to sustain power(max) for 7.6 +/- 4.3 min with P/B, 6.7 +/- 2.9 min with PAK, 7.3 +/- 4.9 min with BIC and 6.9 +/- 2.7 min with placebo (mean +/- S.E.). Blood lactate (BLa) was significantly elevated at cessation of exercise and remained elevated during recovery, but there were no significant differences between treatments. Bicarbonate fell significantly during exercise and recovery in each treatment. At rest, bicarbonate levels were significantly higher in both the P/B and BIC than in the PAK or PLA treatments. Pooled data from the P/B and BIC treatments demonstrated a significant increase in pH at rest and end of exercise when compared to PLA treatment. These data suggest that sodium bicarbonate rather than PAK was responsible for this increase. In summary, our data suggest that in the dosages used in this study, administration of sodium bicarbonate or PAK, alone or in combination, is ineffective in increasing short-term maximal exercise capacity.  相似文献   

18.
19.
The aim of this study was to examine the relationship between myosin heavy chain (MHC) release as a specific marker of slow-twitch muscle fibre breakdown and magnetic resonance imaging (MRI) of skeletal muscle injury after eccentric exercise. The effects of a single series of 70 high-intensity eccentric contractions of the quadriceps femoris muscle group (single leg) on plasma concentrations of creatine kinase and MHC fragments were assessed in 10 young male sport education trainees before and 1 and 4 days after exercise. To visualize muscle injury, MRI of the loaded thigh was performed before and 4 days after the eccentric exercise. All participants recorded an increase (P < 0.05) in creatine kinase after exercise. In five participants, T2 signal intensity was unchanged post-exercise compared with pre-exercise and MHC plasma concentration was normal; however, they showed an increase (P < 0.05) in creatine kinase after exercise. For the remaining five participants, there was an increase in T2 signal intensity of the loaded vastus intermedius and vastus lateralis. These changes in MRI were accompanied by an increase in MHC plasma concentration (P< 0.01) as well as an increase in creatine kinase (P < 0.01). We suggest that changes in MRI T, signal intensity after muscle damage induced by eccentric exercise are closely related to damage to structurally bound contractile filaments of some muscle fibres. Additionally, MHC plasma release indicates that this damage affects not only fast-twitch fibres but also some slow-twitch fibres.  相似文献   

20.
目的:观察少年和成年男子业余跑运动员一次急性耐力运动后心率变异(HRV)变化特征,并探讨运动后HRV变化生理学意义。方法:少年(14.4±1.3岁)与成年(25.7±2.8岁)受试者各10名,进行1次90min、强度为95%个体无氧阈强度跑台运动。在运动前、运动后15min以及运动后6h测定HRV。结果:运动后15min,TPLn、HFnu和HRV各时域指标明显低于运动前水平,LFnu和LF/HF显著升高;少年受试者HFnu降幅、LFnu和LF/HF升幅明显低于成年受试者(P<0.05)。运动后6h,HRV各指标均已恢复,其中,TPLn、SDNN、HFnu和RMSSD有反弹的迹象。运动后HFnu相对运动前的降幅与受试者年龄呈负相关关系(r=-0.645,P<0.01,n=20);另外,HFnu、TPLn相对运动前降低程度与运动前水平高度负相关(P<0.05,n=20)。结论:一次急性耐力运动后HRV出现短暂抑制现象,少年受试者运动后HRV降低幅度相对成年较低,可能与发育成熟度不同有关,急性运动后HRV变化可能是运动适应的生理表现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号