首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper reports a 4-month study that investigated the effectiveness of curriculum materials incorporating the history of science (HOS) on learning science, understanding the nature of science (NOS), and students’ interest in science. With regards to these objectives, three different class contexts were developed with three main types of information in history of science. In the first class context, the similarities between students’ alternative ideas and scientific concepts from the HOS were considered in developing teaching materials. In the second class context, the teacher developed discussion sessions on the ways scientists produce scientific knowledge. In the third class context, short stories about scientists’ personal lives were used without connection to the concepts of science or NOS. Ninety-one eighth-grade students were randomly assigned to four classes taught by the same science teacher. The concepts in the motion unit and in the force unit were taught. Three of the four classrooms were taught using the contexts provided by the HOS while the fourth class was taught in the same way that the teacher had used in previous years. The effects on student meaningful learning, perceptions of the NOS, and interest in science were evaluated at the beginning, at the middle, and at the end of the study to compare differences between historical class contexts and the Traditional Class. Results of analysis showed that the changes in meaningful learning scores for the first class context were higher than other classes but the differences between classes were not significant. The HOS affected student perceptions of the scientific methods and the role of inference in the process of science. Stories from scientists’ personal lives consistently stimulated student interest in science, while discussions of scientific methods without these stories decreased student interest. The positive effects of stories relating scientist’ personal life on student interest in science has major importance for the teaching of science. This research also helps to clarify different class contexts which can be provided with different types and uses of historical information.  相似文献   

2.
The purpose of this study was to examine the association of middle school student science achievement and attitudes toward science with student-reported frequency of using computers to learn science and other classroom practices. Baseline comparison data were collected on the frequency of student-centred teaching practices (e.g. the use of group experiments during science class) and traditional teaching practices (e.g. having students copy notes during science class) to learn science. The student sample was composed of 294 seventh-grade students enrolled in middle school science. Multiple regression was used to investigate the association of attitudes toward science, student-centred teaching practices, computer usage, and traditional teaching practices with science achievement. Both attitudes toward science and student-centred teaching practices were positively associated with science achievement, and student-centred teaching practice was positively associated with attitude toward science. Computer usage was found to have a negative association with student achievement, which was moderated by traditional teaching practices.  相似文献   

3.
To improve student science achievement in the United States we need inquiry-based instruction that promotes coherent understanding and assessments that are aligned with the instruction. Instead, current textbooks often offer fragmented ideas and most assessments only tap recall of details. In this study we implemented 10 inquiry-based science units that promote knowledge integration and developed assessments that measure student knowledge integration abilities. To measure student learning outcomes, we designed a science assessment consisting of both proximal items that are related to the units and distal items that are published from standardized tests (e.g., Trends in International Mathematics and Science Study). We compared the psychometric properties and instructional sensitivity of the proximal and distal items. To unveil the context of learning, we examined how student, class, and teacher characteristics affect student inquiry science learning. Several teacher-level characteristics including professional development showed a positive impact on science performance.  相似文献   

4.
5.
Preservice science teachers face numerous challenges in understanding and teaching science as inquiry. Over the course of their teacher education program, they are expected to move from veteran science students with little experience learning their discipline through inquiry instruction to beginning science teachers adept at implementing inquiry in their own classrooms. In this study, we used Aikenhead’s (Sci Educ 81: 217–238, 1997, Science Educ 85:180–188, 2001) notion of border crossing to describe this transition preservice teachers must make from science student to science teacher. We examined what one cohort of eight preservice secondary science teachers said, did, and wrote as they both conducted a two-part inquiry investigation and designed an inquiry lesson plan. We conducted two types of qualitative analyses. One, we drew from Costa (Sci Educ 79: 313–333, 1995) to group our preservice teacher participants into one of four types of potential science teachers. Two, we identified successes and struggles in preservice teachers’ attempts to negotiate the cultural border between veteran student and beginning teacher. In our implications, we argue that preservice teachers could benefit from explicit opportunities to navigate the border between learning and teaching science; such opportunities could deepen their conceptions of inquiry beyond those exclusively fashioned as either student or teacher.  相似文献   

6.
This study examined the effects of individual student factors and classroom factors on elementary science achievement within and across five countries. The student‐level factors included gender, self‐confidence in science and home resources. The classroom‐level factors included teacher characteristics, instructional variables and classroom composition. Results for the USA and four other countries, Singapore, Japan, Australia and Scotland, were reported. Multilevel effects were examined through Hierarchical Linear Modelling, using the Trends in International Mathematics and Science Study 2003 fourth grade dataset. Overall, the results showed that selected student background characteristics were consistently related to elementary science achievement in countries investigated. At the student level, higher levels of home resources and self‐confidence and at the classroom level, higher levels of class mean home resources yielded higher science scores on the TIMSS 2003. In general, teacher and instructional variables were minimally related to science achievement. There was evidence of positive effects of teacher support in the USA and Singapore. The emphasis on science inquiry was positively related to science achievement in Singapore and negatively related in the USA and Australia. Recommendations for practice and policy were discussed.  相似文献   

7.
We report on the construction and application on an instrument entitled the “Science Achievement Influences Survey” to assess combined effects of student attitudes about science, peer interaction, and home support, and the frequency of student‐centred and teacher‐centred instructional practices on student achievement. Controlling for pre‐test content knowledge, results indicated that student‐centred teaching practices have a positive association with student achievement (p < .01; i.e., group experiments) and a negative association with teacher‐centred teaching practices (p < .01; i.e., copying notes). Additionally, student attitudes about science were positively associated with student‐centred teaching practices (p < .01) and negatively associated with teacher‐centred teaching practices (p < .01). Most significantly, this study documents the predicted gains in science achievement associated with frequency of specific instructional practices used by middle‐school science teachers. Especially noteworthy and significant is the finding that near‐daily implementation of group experiments and reduction of extensive note‐copying during class yield the greatest positive impact on student achievement. Outside of school, peer interaction and home support were not significantly associated (p > .05) with student achievement. The student sample included 611 middle‐school science students with a wide range of socioeconomic and cultural backgrounds.  相似文献   

8.
This study examined the self-efficacy of Turkish Cypriot science teachers working at high schools in Northern Cyprus. The study sample was 200 science teachers who participated in the survey. The Teacher Self-efficacy (TSE) Scale was used as a data source. It was observed that the science teachers’ efficacy beliefs about student engagement in class; instructional strategies; and classroom management did not change depending on their years of teaching experience, and branch of science. Moreover, the teachers’ school level and faculty from which they graduated were significant predictors of their self-efficacy for student engagement and instructional strategies, but gender was not a significant predictor of teacher self-efficacy.  相似文献   

9.
This paper reports the results of a pilot-study in a senior paper science and engineering class, of an innovative instructional method designed to foster student problem-solving and in-depth learning of material, namely, student peer teaching. We review related literature focusing on active learning methods in science and engineering education, describe the method of student peer teaching used in this pilot-study, present the evaluation method and results, and discuss implications for further development of this method of instruction. Results suggest that students were able to effectively teach significant curricular content. In addition, the method of student peer teaching served important purposes in helping students develop in-depth understanding and expertise in the issues related to their teaching session, as well as teaching and presentation skills which will be useful in their professional practice. However, students expressed concern that, while achieving in-depth learning of the content of their teaching session, they tended to focus on the content area of their teaching session at the expense of other content areas and may not have learned as well from other students as from the Professor. We recommend a modified structure for student peer teaching which incorporates cooperative learning methods; increased Professor involvement in class sessions, in the role of the mentor; and modifications in performance evaluation methods to ensure ongoing student monitoring of progress and self-assessment. The method of student peer teaching, in science and engineering education, combined with cooperative learning methods, is viewed as a major extension of cooperative learning methods, used in the service of preparation for professional careers.  相似文献   

10.
In the broadest sense, the goal for primary science teacher education could be described as preparing these teachers to teach for scientific literacy. Our starting point is that making such science teaching accessible and desirable for future primary science teachers is dependent not only on their science knowledge and self-confidence, but also on a whole range of interrelated sociocultural factors. This paper aims to explore how intersections between different Discourses about primary teaching and about science teaching are evidenced in primary school student teachers’ talk about becoming teachers. The study is founded in a conceptualisation of learning as a process of social participation. The conceptual framework is crafted around two key concepts: Discourse (Gee 2005) and identity (Paechter, Women’s Studies International Forum, 26(1):69–77, 2007). Empirically, the paper utilises semi-structured interviews with 11 primary student teachers enrolled in a 1-year Postgraduate Certificate of Education course. The analysis draws on five previously identified teacher Discourses: ‘Teaching science through inquiry’, ‘Traditional science teacher’, ‘Traditional primary teacher’, ‘Teacher as classroom authority’, and ‘Primary teacher as a role model’ (Danielsson and Warwick, International Journal of Science Education, 2013). It explores how the student teachers, at an early stage in their course, are starting to intersect these Discourses to negotiate their emerging identities as primary science teachers.  相似文献   

11.
当好班主任,一要树立热爱学生的思想,二要改进教育学生的方法,三要加强自身德行的修养,四要强化科学文化知识的学习.  相似文献   

12.
Using secondary analysis of a large database from a Statewide Systemic Initiative, we examined the effects of several types of environments on student outcomes. Over 3 years, nearly 7,000 students in 392 classes in 200 different schools responded to a questionnaire that assesses class, home, and peer environments as well as student attitudes. Students also completed an achievement measure that, developed by scientists, teachers, and science educators, was not aligned with any particular curriculum. Students were enrolled in middle‐school science and mathematics classes in schools that had participated in the Statewide Systemic Initiative. Rasch analyses allowed us to compare across student cohorts and across schools. Findings confirmed the importance of extending research on classroom learning environments to include the learning environments of the home and the peer group. Although all three environments accounted for statistically significant amounts of unique variance in student attitudes, only the class environment (defined in terms of the frequency of use of standards‐based teaching practices) accounted for statistically significant amounts of unique variance in student achievement scores. The findings are supported by other studies of systemic reform in the United States.  相似文献   

13.
14.
The lack of academic engagement in introductory science courses is considered by some to be a primary reason why students switch out of science majors. This study employed a sequential, explanatory mixed methods approach to provide a richer understanding of the relationship between student engagement and introductory science instruction. Quantitative survey data were drawn from 2,873 students within 73 introductory science, technology, engineering, and mathematics (STEM) courses across 15 colleges and universities, and qualitative data were collected from 41 student focus groups at eight of these institutions. The findings indicate that students tended to be more engaged in courses where the instructor consistently signaled an openness to student questions and recognizes her/his role in helping students succeed. Likewise, students who reported feeling comfortable asking questions in class, seeking out tutoring, attending supplemental instruction sessions, and collaborating with other students in the course were also more likely to be engaged. Instructional implications for improving students’ levels of academic engagement are discussed.  相似文献   

15.
Science, technology, engineering, and mathematics (STEM) fields, important in today’s world, are underrepresented by students with disabilities. Students with visual impairments, although cognitively similar to sighted peers, face challenges as STEM subjects are often taught using visuals. They need alternative forms of access such as enlarged or audio‐converted text, tactile graphics, and involvement in hands‐on science. This project focused on increasing teacher awareness of and providing funds for the purchase of supplemental adaptive resources, supplies, and equipment. We examined attitude and instructional changes across the year of the programme in 15 science and mathematics teachers educating students with visual impairments. Positive changes were noted from pretest to posttest in student and teacher perspectives, and in teacher attitudes towards students with disabilities in STEM classes. Teachers also provided insights into their challenges and successes through a reflective narrative. Several adolescent students resisted accommodations to avoid appearing conspicuous to peers. Teachers implemented three strategies to address this: providing the adaptations to all students in the class; convincing the student of the need for adaptation; and involving the class in understanding and accepting the student’s impairment. A variety of teacher‐created adaptations for various science and mathematics labs are reported. Another finding was many adaptations provided for the student with visual impairment benefitted the entire class. This study supports the claim that given knowledgeable, supportive teachers, and with appropriate accommodations such as tactile or auditory materials, students with visual impairments can be as successful and engaged as other students in science and mathematics.  相似文献   

16.
First-Year College Students’ Conflict with Religion and Science   总被引:1,自引:1,他引:0  
This study took place during a First Year Seminar course where 20 incoming college freshmen studied the central topic of the nature of science within the context of biological evolution. The instructor researched students’ understandings in the nature of science as they progressed through the course by examining a variety of qualitative and quantitative data including class writings, pre- and post-test selected items from the VOSTS (Views on Science-Technology-Society), and interviews. The intended outcomes of the course were to reduce the number of student misconceptions in the nature of science and to ease student apprehension when learning about evolution. Data were analyzed to determine whether students were moving toward a more generally accepted idea of the nature of science or toward another type of misconception.  相似文献   

17.
本文主要围绕怎样才能上好听力课?上完一节听力课后如何去巩固所学的知识?为了提高学生的听力技能.本文采用了课后目的作业的方法.可以有效的提高学生的听力水平。由于听力教学自身有以上的特点。书面形式的作业显然不够科学。那么给学生布置一些目的作业如何昵?本文阐述了并实践这一方法。  相似文献   

18.
Student engagement with science is a long-standing, central interest within science education research. In this article, we examine student engagement with science using a Bourdiusian lens, placing a particular emphasis on the notion of field. Over the course of one academic year, we collected data in an inner London secondary science classroom through lesson observations, interviews and discussion groups with students, and interviews with the teacher. We argue that applying Bourdieusian theory can help better understand differential patterns of student engagement by directing attention to the alignment between students’ habitus and capital, and the field. Student behaviours that did not meet the requirements of the wider field were not recognised and valued as constituting engagement. Even when the ‘rules of the game’ of the science classroom were understood by the students, the tensions they experienced within the field made engaging with science impossible and undesirable. We discuss how a greater focus on the field can be useful for planning future interventions aimed at making science education more equitable.  相似文献   

19.
ABSTRACT: Writing can enhance learning by helping students put words to their thinking about course material. The purposes of this study were to assess the influence of a structured academic journal writing exercise on student learning in a food science class and to examine student responses to the experience. Hermeneutics, a philosophy of science and qualitative research method, was used to analyze journal data from 48 participating students during a 2-y period and involved 3 steps: (1) describing themes taken from a global reading of student commentaries, (2) reducing or relating themes to specific, verbatim statements found in student writings, and (3) interpreting or imposing meaning on the themes and the statements (Lanigan 1988). Hermeneutic analysis showed that journal writing was difficult at first but became easier and enjoyable over time, allowed students to relate course content to other knowledge, exposed students to course material multiple times allowing for better information retention, enhanced student understanding, helped students think critically, required students to prepare for class, gave students the opportunity to express opinions, and allowed students to experience writing as enjoyable and positive. Several minor themes suggested that most students found the experience useful to their learning. Findings from this study are consistent with neuroscience and cognitive psychology theories regarding learning and the development of reasoning skills.  相似文献   

20.
The purpose of this study was to discover if grouping students in the laboratory on the basis of their formal reasoning ability affected (1) their science content achievement, (2) their formal reasoning ability, (3) the learning environment in the laboratory, and (4) the relationships between individuals in a particular group. The laboratory groups for three physical science classes for preservice elementary teachers were arranged as follows: (1) one class with students of unequal reasoning ability grouped together, i.e., one highly developed formal reasoner per group (the heterogeneous group), (2) one class with students of similar reasoning ability grouped together (the homogeneous group), and (3) one class arranged in groups according to the desires of the class members (the student choice group). The three classes were compared using pre-and post-scores on content and formal reasoning instruments and scores for classroom environment and social relationships. Results indicated that the groupings as described had significantly different effects on science content achievement but not on any of the other questions posed above. The students in the class with laboratory teams grouped by student choice had significantly lower science content scores than the students in the classes with teams formed using either the heterogeneous or homogeneous grouping procedures. The difference between the heterogeneously and homogeneously grouped classes was not significant at the 0.05 level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号