首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
定理如图1,若D是△ABC的BC边或其延长线上一点,记AB与AD的夹角为α,AC与AD的夹角为β,则(BD)/(DC)=(AB·sinα)/(AC·sinβ).  相似文献   

2.
容易证明如下定理: 定理如图,D为△ABC的边BC(或其延长线)上任一点,则BD/DC=AB·sin∠BAD/AC·sin∠CAD。证明:在△ABD与△ACD中,分别由正弦定理,得BD/in∠BAD=AB/sin∠BDA ①DC/sin∠CAD=AC/sin∠CDA 又∠BDA ∠CDA=180°(或∠BDA=∠CDA)。∴sin∠BDA=sin∠CDA ① ②,即得  相似文献   

3.
如图一,在△ABC中,AD为∠BAC的平分线,则AD~2 BD·DC=AB·AC. 这就是平面几何中著名的斯库顿定理.它的证法简便. 证明:延长∠BAC的平分线AD交⊙ABC于E,连结BE.∴∠E=∠C,∠BAE=∠DAC,∵△ABE∽△ADCAB/AE=AD/AC,∴AD(AD DE)=AB·AC.即AD~2 AD·DE=AB·AC,由相交弦定理得AD·DE=BD·DC,∴AD~2 BD·DC=AB·AC.  相似文献   

4.
初21.如图,设D是锐角△ABC内部一点,使得∠ADB-∠ACB=α,并有AC·BD=AD·BC。求证: (AB·CD)/(AC·BD)=2sinα/2。  相似文献   

5.
本文给出圆中具有公共端点的三条弦及其夹角之间的一个数量关系,并举例说明其应用。 定理 若AB,AC,AD是⊙O的三条弦,∠BAC=α,∠CAD=β则AB·sinβ AD·sinα=AC·sin(α β) 证明 设⊙O的半径为R,连结BC,BD,CD,则由正弦定理,得:BC=2R·sinα,CD=2R·sinβ,BD=2R·sin(α β)。  相似文献   

6.
斯台沃特定理(stewart):在△ABC中,D是BC上的一点(如图1), 则AD~2=(AC~2·BD AB~2·DC/BD DC)-BD·DC. 当△ABC为等腰三角形时,便有 特例:在△ABC中,AB=AC,D为BC上的 点,则AD~2=AB~2-BD·DC. 此结论有很重要的作用.尤其是某些等腰三角形问题,若考虑该结论,则解法往往来得简捷、明快.兹举例说明.  相似文献   

7.
本文现将张角公式及其在数学竞赛解题中的应用介绍如下: 一、张角公式如图,设直线ACB外一视点P,对于线段AC、CB的张角分别为α、β,且α β<180°,则sin(α β)/PC=sinα/PB sinβ/PA 证明:∵△PAB=△PAC △PCB,∴1/2PA·PB·sin(α β)-1/2PA·PC·sinα 1/2PC ·PBsinβ。∴两边同除以1/2PA·PB·PC,即得欲证式。二、应用举例例1 连结正△ABC的外接圆劣弧AB上一点P的线段CP交AB于D,求证:1/PA 1/PB=1/PD(1990年山西省初中数学  相似文献   

8.
<正>面积问题是几何中常见的问题之一,一般都会转化为三角形的面积来求,本文就来谈谈这类问题的解法。例1在△ABC中,AB=4cm,AC=3cm,∠BAC的角平分线AD=2cm,求此三角形的面积。解:如图1,在△ABC中,设∠BAC=α,S_(△ABC)=S_(△ADC)+S_(△ADB)。所以1/2AB·AC·sinα=1/2AC·  相似文献   

9.
三点共线定理是指:如图1,若∠BAD=α,∠CAD=β,AB=a,AC=b,AD=m,那么,B、D、C三点共线的充要条件是。 sin(α+β)/m=sinβ/a+sinα/b。证明:∵B、D、′C三点共线的充要条件是 S_(△ABC)=S_(△ABD)+S_(△ADC)(?)1/2ab sin(α+β) =1/2am sinα+1/2bm sinβ(?)sin(α+β)/m =sinβ/a+sinα/b。证毕。有些几何问题采用上述定理求解,大有以简驭繁,化难为易,新颖轻巧,别有奇妙之效。下面试举  相似文献   

10.
共高三角形的性质:共高三角形的面积比等于对应底边的比.题目:如图1,S△ABD=12BD·h,S△ADC=12DC·h,从而S△ABD S△ADC=12BD·h12DC·h=BD DC.特别地,当AD为△ABC中线时,S△ABD=S△ADC.在相似三角形的学习中,此性质常与相似三角形面积比等于相似比的平方这一性质综合使用,现举两例说明.例1如图2,△ABC与△DEC重叠的情形,其中E在BC上,AC交DE于F点,且AB//DE.若△ABC与△DEC的面积相等,  相似文献   

11.
本期问题 46.△ABC的三条边成等比数列,则以它三条高为边的三角形和△ABC相似。 (阮可之提供) 47.已知α、β均为锐角,能否用sinα,sinβ,sin(α+β)为边构成三角形? (王茂森提供) 48.△ABC中∠A=90°, M、N在BC边上, 且BM=MN=NC,∠BAM=α, ∠MAN=β,∠NAC=γ, 求证:sinβ=3sinαsinγ。 (培思提供) 49.设x>y>3,证明y~x>x~y。 (袁文提供) 50.求3~(666666)除以7的余数。 (黄鸿仪提供) 上期问题解答 41.已知三角形的面积,试求以三角形三条中线为边的三角形的面积。解:(如图)设△ABC面积=S,D、E、F分别是三边BC,AC,AB的中点,△ABC的重心为G。  相似文献   

12.
我们知道,不在同一条直线上的三点确定一个圆,然而人们往往忽视三点共圆问题。偏重于四点共圆,事实上,四点共圆是特殊的,有较强条件的,而三点共圆却是普遍存在,条件很弱的,只要有三角形的地方便有三点共圆,在几何证题中,若能恰当地引入辅助圆(三点圆)充分利用圆的性质,常常可使问题化难为易,证法别具一格。例1,△ABC中,AD为∠BAC的内角平分线,则AB/AC=DB/DC 证明不妨设AB≥AC,作△ADC的外接圆交AB于E,连ED则∵∠1=∠2∴ED=DC,△ABC∽△DBE∴AB/AC=BD/ED=BD/DC这比常规证法简洁,新颖。  相似文献   

13.
等腰三角形“三线合一”性质 :等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。它包含以下三个真命题 :在△ ABC中 (如图 1) ,(1)若 AB=AC,AD⊥ BC,那么 BD=CD,∠ 1=∠ 2 ;(2 )若 AB=AC,BD=DC,那么 AD⊥ BC,∠ 1=∠ 2 ;(3)若 AB=AC,∠ 1=∠ 2 ,那么 AD⊥ BC,BD=DC。可以证明 ,上述三个命题的逆命题都是真命题。综合上述六个命题 ,可知 :在△ ABC中 ,如果 1AB=AC;2 AD⊥ BC;3BD=DC;4∠ 1=∠ 2四项中任意两项成立 ,那么其余两项一定成立。下面举例说明等腰三角形“三线合一”在解题中的应用。例 1.已知 :…  相似文献   

14.
初三学生学过锐角三角函数定义和正弦定理、余弦定理后,在复习小结时,若能将这些三角知识运用于解平凡题,则一方面可以让学生加深对这些三角知识的理解和掌握,另一方面可以激发学生的学习兴趣,使解平几题多一种方法,提高解题能力。 用三角知识解平几题,其要领就是把平几问题归结为三角形中的边角关系,进而转化为三角函数式的运算问题去解决。可以不作或少作辅助线,思路清楚,关系明显,运算简单,收到事半功倍的效果。下面举例说明。 例1 △ABC中,E是内心,∠A的平分线和△ABC的外接圆相交于点D,求证:BD=CD=DE。 证 如图1,△ABD的外接圆和△ACD的个接圆是同一个圆,设其半径为R,设∠BAD=∠CAD=α,∠EBA=∠EBC=β。在△ABD和△ACD中,由正弦定理得BD=2Rsinα,CD=2Rsinα,∴BD=CD。 在△BDE中,由正弦定理得:BD/sin∠BED=DE/sin∠DBE∵∠BED=α+β,∠DBE=∠CBD+β,而∠CBD=∠CAD=α,即∠DBE=α+β,∴sin∠BED=sin∠DBE,∴BD=DE,故BD=CD=DE。  相似文献   

15.
线段的垂直平分线(中垂线)的性质定理及其逆定理在解题中有着广泛的应用,现举例说明,供同学们参考.一、用于求线段长例1如图1,在△ABC中,AB=AC,AC的垂直平分线分别交AB、AC于D、E.若AB=14,△BCD的周长为22,求BC的长.分析:由DE是AC的垂直平分线,得DA=DC.则BD+DC=BD+DA=AB=14.又BC+BD+DC=22,故BC=22-(BD+DC)=22-14=8.(具体证明过程请读者自行完成,下同)二、用于求角的度数例2如图2,AB⊥CD于B,AD的垂直平分线CF分别交AB、AD于E、F,EB=EF,求∠A的度数.分析:由CF是AD的垂直平分线想到连结DE,则AE=DE,故∠A=∠1…  相似文献   

16.
题若α,β,γ∈R,求u=sin(α-β) sin(β-γ) sin(γ-α)的最大值和最小值.在本刊2006年第1期第40页上,应用4元均值不等式给出了该题的一种初等解法,其实,逆向利用行列式,可以给出该问题的一种巧思妙解.解u=sinαcosβ sinβcosγ sinγcosα-cosαsinβ-cosβsinγ-cosγsinα=sinαcosα1sinβcosβ1sinγcosγ1,构造点A(sinα,cosα),B(sinβ,cosβ),C(sinγ,cosγ),则|u|=2S△ABC. 1很明显,上面的三点A、B、C都在单位圆:x2 y2=1上.因为圆内接三角形,以正三角形的面积为最大,所以当△ABC为正三角形时,S△ABC取得最大值343,于是|u…  相似文献   

17.
一、选择题1·在下列关于直线l1,l2与平面α、β的命题中,真命题的是()(A)若l1β且α⊥β,则l1⊥α.(B)若l1⊥β且α∥β,则l1⊥α.(C)若l1⊥β且α⊥β,则l1∥α.(D)若α∩β=l2,且l1∥l2,则l1∥α.(第2题)2·如图,在直三棱柱ABC-A1B1C1中,AB=BC=AA1,∠ABC=90°,点D、E分别是棱AB,BB1的中点,则直线DE与BC1所成的角是()(A)45°.(B)60°.(C)90°.(D)120°.3·二面角α-l-β的平面角为120°,A、B∈l,ACα,BDβ,AC⊥l,BD⊥l,若AB=AC=BD=1,则CD等于()(A)2.(B)3.(C)2.(D)5.4·空间四边形ABCD,AC=AD,∠BAC=∠BAD=3π,…  相似文献   

18.
文[1]中给出一个等腰三角形的性质定理: 定理1已知△ABC中,AB=AC,如果D为BC边上任意一点,那么AD<'2>-AB<'2>=BD·DC.  相似文献   

19.
用三弦定理解竞赛题   总被引:1,自引:0,他引:1  
由笔者提出并命名的三弦定理是:如图1,已知PA、PB、PC 是⊙O 的三条弦,记∠APB=α,∠PBC=β,则 PB·sin(α β)=PC·sinα PA·sinβ.证明:设⊙O 的半径为 R,连结 AB、BC、AC,则 AC=2R·sin(α β),AB=2R·sinα,BC=2R·sinβ.由托勒密定理,得 PB·AC=PC·AB PA·BC.将上面三个等式代入此式,得PB·sin(α β)=PC·sinα PA·sinβ.  相似文献   

20.
三点共线定理是指:如图(1),若∠BAD=α,∠CAD=β,AB=a.AC=b,AD=m,那么B、D、C三点共线的充要条件是sm(α β)/m=smβ/a smα/b证明:B、D、C三点共线=S△ABC=S△ABD=SABD S△ADC=1/2absin(α )=1/2amsina 1/2bmsinβ=sin(α )/m=sinβ/a十sinα/b图(1)三点共线定理(下称共线定理)虽然简单,却很重要,其用途广泛.下面结合一些几何名题、竞赛题谈谈共线定理在平几中的应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号