首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
命题如图1,在△ABC中,D是BC上任意一点,P是AD上任意一点,设△APB、△BPD、△APC、△CPD的面积分别为S_1、S_2、S_3、S_4,则有  相似文献   

2.
题目如图(1),已知,四边形ABCD中,AB∥CD,M为AB的中点,S_(△DMC)、S_(△DMC)、S_(△DBC)分别表示△DMC、△DAC、△DBC的面积,那么,S_(△DMC)=S_(△DAC)+S_(△DBC)/2 ①。  相似文献   

3.
定理梯形的两条对角线和两腰所在的两个三角形的面积相等,且这个面积是梯形两条对角线与两底所在的两个三角形面积的比例中项。证明:如图1,梯形ABCD中,AD∥BC,记∠AOB=a,△AOD、△BOC的两面积分别为 S_1、S_2,内三角形面积公式可知:S_(△ABC)=S_(△DBC), ∴ S_(△ABC)-S_(△BOC)=S_(△DBC)-S_(△BOC), ∴ S_(△AOB)=S_(△DOC)。又S_1·S_2=1/2OA·ODsina·1/2OB·OCsina =1/2OA·OBsina·1/2OD·OCsina =S_(△AOB)~2。应用上面的定理,解决一类作图题和与梯形面积有关的竞赛题。  相似文献   

4.
定理 设P是△ABC所在平面上一点,AP,BP,CP分别与对边BC,CA,AB所在的直线交于D,E,F,则AP/PD=AE/EC AF/FB. 证明 如图1,因为△APC和△BPC有公共边CP,故S_(△APC)/S_(△BPC)=AF/FB,同理S_(△APB)/S_(△BPC)=AE/EC。 图1 ∴AE/EC AF/FB=S_(△APC)/S_(△BPC) S_(△ABC)/S_(△BPC)=(S_(△ABC)-S_(△BPC))/S_(△BPC)=(S_(△ABC)/S_(△BPC)-1)=AD/PD-1=AP/PD。 即AP/PD=AE/EC AF/FB。  相似文献   

5.
281.设ABCD是⊙O的外切梯形,E是它的对角线交点,r_1、r_2、r_3、r_4分别是△ABE、△BCE、△CDE、△DAE的内切圆半径,求证: 1/r_1+1/r_3=1/r_2+1/r_4。证:设AD∥BC,S_1、S_2、S_3、S_4和P_1、P_2、P_3、P_4分别表示△ABE、△BCE、△CDE、△DAE的面积和半周长。由于S_i=r_i·p_i,故只要证明P_1/S_1+P_3/S_3=P_2/S_2+P_4/S_4。∵ABCD是圆的外切梯形,∴AB+CD=  相似文献   

6.
定理凸四边形的两条对角线把四边形划分成的四个小三角形中,两组对顶的两个三角形面积之积相等. 证明:如图1,记∠AOB=α,△AOB、△COD△AOD、△BOC的面积分别为S_1、S_2、S_3、S_4,则由三角形面积公式有S_1·S_2=1/2AO·BO·sinα·1/2CO·DO·sinα,S_3·S_4=1/2AO·DO·sin(180°-α)·1/2BO·CO·sin(180°-α)故得,S_1·S_2=S_3·S_4。  相似文献   

7.
命题 设△DEF是△ABC的内接三角形,D、E、F关于所在边中点的对称点为D′、E′、F′,则 (1)S_(△DEF)=S_(△D′E′F′) (2)S_(△DEF′)=S_(△D′EF),S_(EF′D′)=S_(△E′FD),S_(△FD′E′)=S_(F′DE)  相似文献   

8.
一、证明 连接EF,在梯形AEFD中,显然有 sin∠AGD =sin∠DGF =sin∠EGF =sin∠AGE, (1) S_(△AGD)=S_(△AED)-S_(△AEG) =S_(△AEF)-S_(△AEG)=S_(△EGF)。(2) 由(1)和(2),有  相似文献   

9.
定理凸四边形的两条对角线把四边形划分成的四个小三角形中,两组对顶的两个三角形面积之积相等。证明如图1,记∠AOB=a,△AOB、△COD、△AOD和△BOC的面积分别为S_1、S_2、S_3和S_4,则由三角形面积公式,有  相似文献   

10.
结论如图1,已知D为△ABC边BC上的任一点,O为AD上一点,连结BO、CO.设△BOD、△DOC、△AOC、△AOB的面积分别为S_1、S_2、S_3、S_4.则S_1·S_3=S_2·S_4. 证分别过B、C两点作AD所在直线的垂线BE、CF,垂足为E、F,则有(BD)/(CD)=(BE)/)CF).  相似文献   

11.
定理 设D是△ABC的边BC中点,则S_△ABD=S_△ACD。这是中线的一个性质,本文巧用这一性质解两道竞赛。 例1 (81年芜湖市竞赛题)如图1,AA′,BB′,CC′是△ABC的外接圆直径,试证:S_△ABC=S_△ABC′ S_△BCA′ S_△CAB′。  相似文献   

12.
定理 P是△ABC形内任一点,AP、BP、CP的延长线分别与其对边交于D、E、F,则PD/AD PE/BE PF/CF=1 证 如图1,设△PAB、△PBC、△PAC和△ABC的面积依次为S_1、S_2、S_3和S,则,S_1 S_2 BS_3=S,又PD/AD=  相似文献   

13.
引例 如图1,D为 △ABC边BC上的一点,且 DE∥AC,DF ∥AB,△ABC面积记 为S_△,△BDE、△DCF 的面积分别记为S_1、S_2,□AEDF面积记为S'.  相似文献   

14.
在文[1]中,陶杰同志介绍了三维空间中的勾股定理,即 (1)在四面体O—ABC中,若∠AOB=∠AOC=∠BOC=π/2,则 A_1~2+A_2~2+A_3~2=A_4~2,其中,A_1:S_(△AOB),A_2=S_(△AOC),A_3=S_(△BOC),A_4=S_(△ABC).  相似文献   

15.
定理 设A’、B’、C’分别在△ABC的三边BC、CA、AB上,若AC’:C’B=p,BA’:A’C=q,C’B:B’A=r,△ABC与△A’B’C’的面积为S与S_0.则S_0/S=pqr 1/(p 1)(q 1)(r 1)证 设△AB’C’、△BA’C’、△CB’A’的面积分别为S_1、S_2、S_3、则  相似文献   

16.
本文将给出正三角形中的一个新的不等式,并对它作一些推广. 定理 设D、E、F分别是正△ABC的边BC、CA、AB上的内点,△ABC、△AEF、△BDF、△CED的面积分别记为S、S_1、S_2、S_3.则 1/s_1 1/s_2 1/s_3≥12/S  相似文献   

17.
命题1“等边三角形内任一点至三边距离之和为一定值”有几种证法,但以下面的证法较简便。证明:如图1,连结PA,PB,PC. ∵S_(△ABC)=S_(△PBC)+S_(△PCA)+S_(△pAB),∴S_(△ABC)=1/2BC·PD+1/2CA·PE+1/2AB·PF又 AB=BC=CA,∴ PD+PE+PF=2S_(△ABC)/BC. 等边三角形的这一性质可推广到等边凸多边形中,以上的证明实质上给出如下的定理1 等边凸多边形内任一点至各边的距离之和为定值。特殊地,正多边形内任一点至各边的距离之和为定值。  相似文献   

18.
在中学数学中所涉及的三角形面积公式很多,灵活地运用它,均会收到满意的效果,其中公式S_△=1/2bcsinA为证明平面几何中两个三角形面积相等开辟了一条蹊径,下面举几例供读者参考: 例1 如图1,在△ABC中,AB=AC,D为底边上任一点,作∠BDE=∠CDF,交两腰于E、F。求证:S_(△BDF)=S_(△CDE)。  相似文献   

19.
<正>在近几年的中考试题中,"二等分"图形的面积问题频频出现.解答这类题目的关键是要熟练掌握常见图形的"等积线"的应用.一、三角形的等积线(二分线)探究如图1,直线a∥b,S_(△BCE)=S_(△BCF)(同底等高),易得S_(△BOE)=S_(△COF).如图2,中线AD所在的直线就是△ABC的等积线,  相似文献   

20.
<正>面积问题是几何中常见的问题之一,一般都会转化为三角形的面积来求,本文就来谈谈这类问题的解法。例1在△ABC中,AB=4cm,AC=3cm,∠BAC的角平分线AD=2cm,求此三角形的面积。解:如图1,在△ABC中,设∠BAC=α,S_(△ABC)=S_(△ADC)+S_(△ADB)。所以1/2AB·AC·sinα=1/2AC·  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号