首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated differences in lower-limb coordination and coordination variability between experienced and novice runners during a prolonged run. Thirty-four participants were categorised as either experienced (n = 17) or novice runners (n = 17). All participants performed a 31-min treadmill run at their individual anaerobic threshold speed, and lower-limb kinematic data were acquired in the sagittal plane at the beginning, middle, and end of the run. Lower-limb coordination and variability during the stance phase were quantified using a vector coding technique for hip-knee, knee-ankle, pelvis-thigh, thigh-shank, and shank-foot couplings. Repeated-measure analysis of covariance revealed that running experience and time had significant interactions on the coordination patterns for hip-knee and pelvis-thigh couplings. During the midstance, experienced runners exhibited a higher percentage of in-phase motion for pelvis-thigh and knee-ankle couplings while novice runners displayed a higher percentage of distal motion for pelvis-thigh coupling and anti-phase motion for hip-knee coupling. Experienced runners displayed more variability in hip-knee and shank-foot couplings, and novice runners had more variability in hip, knee, and thigh motion. Experienced and novice runners adapted to progressive fatigue through different lower-limb coordination patterns. Throughout the prolonged run, experienced runners demonstrated greater coordination variability and novice runners displayed greater joint and segment variability.  相似文献   

2.
The main purpose of this study was to evaluate running kinematic characteristics and foot strike patterns (FSP) during early and late stages of actual and common high-intensity intermittent training (HIIT): 5 × 2000 m with 120-s recovery between runs. Thirteen healthy, elite, highly trained male endurance runners participated in this study. They each had a personal record in the half-marathon of 70 ± 2.24 min, and each had a minimum experience of 4 years of training and competition. Heart rate (HR) and rate of perceived exertion (RPE) were monitored during HIIT. High levels of exhaustion were reached by the athletes during HIIT (HRpeak: 174.30 bpm; RPE: 17.23). There was a significant increase of HRpeak and RPE during HIIT; nevertheless, time for each run remained unchanged. A within-protocol paired t-test (first vs. last run) revealed no significant changes (≥ 0.05) in kinematics variables and FSP variables during HIIT. There were no substantial changes on kinematics and FSP characteristics in endurance runners after fatigue induced by a HIIT. Only the minimum ankle alignment showed a significant change. The author suggests that these results might be due to both the high athletic level of participants and their experience in HIIT.  相似文献   

3.
ABSTRACT

Distal-to-proximal redistribution of joint work occurs following exhaustive running in recreational but not competitive runners but the influence of a submaximal run on joint work is unknown. The purpose of this study was to assess if a long submaximal run produces a distal-to-proximal redistribution of positive joint work in well-trained runners. Thirteen rearfoot striking male runners (weekly distance: 72.6 ± 21.2 km) completed five running trials while three-dimensional kinematic and ground reaction force data were collected before and after a long submaximal treadmill run (19 ± 6 km). Joint kinetics were calculated from these data and percent contributions of joint work relative to total lower limb joint work were computed. Moderate reductions in absolute negative ankle work (p = 0.045, Cohen’s d = 0.31), peak plantarflexor torque (p = 0.004, d = 0.34) and, peak negative ankle power (p = 0.005, d = 0.32) were observed following the long run. Positive ankle, knee and hip joint work were unchanged (p < 0.05) following the long run. These findings suggest no proximal shift in positive joint work in well-trained runners after a prolonged run. Runner population, running pace, distance, and relative intensity should be considered when examining changes in joint work following prolonged running.  相似文献   

4.
We tested the hypothesis that changes in serum cartilage oligomeric matrix protein (COMP), tumour necrosis factor α (TNF-α), interleukin-6 (IL-6) and high-sensitivity C-reactive protein (hsCRP) concentration after regular endurance training and running a marathon race depend on body mass index (BMI) and/or on marathon performance. Blood samples were collected from 45 runners of varying BMI and running experience before and after a 10-week marathon training programme and before, immediately and 24 h after a marathon race. Serum biomarker concentrations, BMI and marathon finishing time were measured. The mean (95% confidence interval (CI)) changes from before to immediately after the marathon were COMP: 4.09 U/L (3.39–4.79 U/L); TNF-α: ?1.17 mg/L (?2.58 to 0.25 mg/L); IL-6: 12.0 pg/mL (11.4–12.5 pg/mL); and hsCRP: ?0.08 pg/mL (?0.14 to ?0.3 pg/mL). The mean (95% CI) changes from immediately after to 24 h after the marathon were COMP: 0.35 U/L (?0.88 to 1.57 U/L); TNF-α: ?0.43 mg/L (?0.99 to 0.13 mg/L); IL-6: ?9.9 pg/mL (?10.5 to ?9.4 pg/mL); and hsCRP: 1.52 pg/mL (1.25–1.79 pg/mL). BMI did not affect changes in biomarker concentrations. Differences in marathon finishing time explained 32% of variability in changes in serum hsCRP and 28% of variability in changes in serum COMP during the 24 h recovery after the marathon race (P < 0.001). Slower marathon finishing time but not a higher BMI modulates increases in pro-inflammatory markers or cartilage markers following a marathon race.  相似文献   

5.
Abstract

A study of the effect of fatigue on the mechanical characteristics of running during a 10,000 meter race was undertaken using high speed cinematography and a computer analysis technique. Eight highly skilled male subjects were filmed at four intervals throughout the event. An analysis of variance for trends was conducted for each of the dependent variables indicating the adjustments made by the runners that accompanied fatigue over the four stages of the event. Runners countered fatigue by changing sections of their total gait pattern (stride length, stride rate, segmental body positions) and reducing running velocity. Toward the end of the race the runners became less competent in the positioning of the foot and leg at foot-strike, which increased the potential for a retarding effect. A more extended lower limb increased the energy requirements of the recovery phase during the latter stages of the race. Fatigue caused these highly skilled runners to systematically alter their technique throughout the race. These adjustments, however, were not excessive.  相似文献   

6.
Abstract

The purpose of this study was to assess the effects of heavy resistance, explosive resistance, and muscle endurance training on neuromuscular, endurance, and high-intensity running performance in recreational endurance runners. Twenty-seven male runners were divided into one of three groups: heavy resistance, explosive resistance or muscle endurance training. After 6 weeks of preparatory training, the groups underwent an 8-week resistance training programme as a supplement to endurance training. Before and after the 8-week training period, maximal strength (one-repetition maximum), electromyographic activity of the leg extensors, countermovement jump height, maximal speed in the maximal anaerobic running test, maximal endurance performance, maximal oxygen uptake ([Vdot]O2max), and running economy were assessed. Maximal strength improved in the heavy (P = 0.034, effect size ES = 0.38) and explosive resistance training groups (P = 0.003, ES = 0.67) with increases in leg muscle activation (heavy: P = 0.032, ES = 0.38; explosive: P = 0.002, ES = 0.77). Only the heavy resistance training group improved maximal running speed in the maximal anaerobic running test (P = 0.012, ES = 0.52) and jump height (P = 0.006, ES = 0.59). Maximal endurance running performance was improved in all groups (heavy: P = 0.005, ES = 0.56; explosive: P = 0.034, ES = 0.39; muscle endurance: P = 0.001, ES = 0.94), with small though not statistically significant improvements in [Vdot]O2max (heavy: ES = 0.08; explosive: ES = 0.29; muscle endurance: ES = 0.65) and running economy (ES in all groups < 0.08). All three modes of strength training used concurrently with endurance training were effective in improving treadmill running endurance performance. However, both heavy and explosive strength training were beneficial in improving neuromuscular characteristics, and heavy resistance training in particular contributed to improvements in high-intensity running characteristics. Thus, endurance runners should include heavy resistance training in their training programmes to enhance endurance performance, such as improving sprinting ability at the end of a race.  相似文献   

7.
We analyzed gait and function of the supporting limb in participants of a marathon race at three stages: prerace, midrace (18 km), and near the end of the race (36 km). We confirmed that the most successful runners were able to maintain running speed for the duration of the race with little change in speed or gait. Speed slowed progressively during the race for those with slower race times, but stride frequency–stride length relationships remained normal for the speed they ran. These findings differ from most lab-based studies of fatigue, in which runners are forced to match a constant preset treadmill speed. Small changes in maximum ground force were seen in both slow- and fast-running participants as race end approached.  相似文献   

8.
Abstract

To develop a track version of the maximal anaerobic running test, 10 sprint runners and 12 distance runners performed the test on a treadmill and on a track. The treadmill test consisted of incremental 20-s runs with a 100-s recovery between the runs. On the track, 20-s runs were replaced by 150-m runs. To determine the blood lactate versus running velocity curve, fingertip blood samples were taken for analysis of blood lactate concentration at rest and after each run. For both the treadmill and track protocols, maximal running velocity (v max), the velocities associated with blood lactate concentrations of 10 mmol · l?1 ( v 10 mM) and 5 mmol · l?1 ( v 5 mM), and the peak blood lactate concentration were determined. The results of both protocols were compared with the seasonal best 400-m runs for the sprint runners and seasonal best 1000-m time-trials for the distance runners. Maximal running velocity was significantly higher on the track (7.57 ± 0.79 m · s?1) than on the treadmill (7.13 ± 0.75 m · s?1), and sprint runners had significantly higher v max, v 10 mM, and peak blood lactate concentration than distance runners (P<0.05). The Pearson product – moment correlation coefficients between the variables for the track and treadmill protocols were 0.96 (v max), 0.82 (v 10 mM), 0.70 (v 5 mM), and 0.78 (peak blood lactate concentration) (P<0.05). In sprint runners, the velocity of the seasonal best 400-m run correlated positively with v max in the treadmill (r = 0.90, P<0.001) and track protocols (r = 0.92, P<0.001). In distance runners, a positive correlation was observed between the velocity of the 1000-m time-trial and v max in the treadmill (r = 0.70, P<0.01) and track protocols (r = 0.63, P<0.05). It is apparent that the results from the track protocol are related to, and in agreement with, the results of the treadmill protocol. In conclusion, the track version of the maximal anaerobic running test is a valid means of measuring different determinants of sprint running performance.  相似文献   

9.
The aim of this study was to observe changes in the kinematics and muscle activities when barefoot running was initially adopted by six habitually shod, recreational rearfoot striking runners. Participants ran on a treadmill shod for 5 min, completed 3 × 10-min intervals of barefoot running and then completed a final minute of shod running at a self-selected pace. Dependent variables (speed, joint angles at foot-contact, joint range of motion (ROM), mean and peak electromyography (EMG) activity) were compared across conditions using repeated measures ANOVAs. Anterior pelvic tilt and hip flexion significantly decreased during barefoot conditions at foot contact. The ROM for the trunk, pelvis, knee and ankle angles decreased during the barefoot conditions. Mean EMG activity was reduced for biceps femoris, gastrocnemius lateralis and tibialis anterior during barefoot running. The peak activity across the running cycle decreased in biceps femoris, vastus medialis, gastrocnemius medialis and tibialis anterior during barefoot running. During barefoot running, tibialis anterior activity significantly decreased during the pre-activation and initial contact phases; gastrocnemius lateralis and medialis activity significantly decreased during the push-off phase. Barefoot running caused immediate biomechanical and neuromuscular adaptations at the hip and pelvis, which persisted when the runners donned their shoes, indicating that some learning had occurred during an initial short bout of barefoot running.  相似文献   

10.
The purpose of this study was to examine the impact of age on running mechanics separately for male and female runners and to quantify sex differences in running mechanics and coordination variability for older runners. Kinematics and kinetics were captured for 20 younger (10 male) and 20 older (10 male) adults running overground at 3.5 m · s?1. A modified vector coding technique was used to calculate segment coordination variability. Lower extremity joint angles, moments and segment coordination variability were compared between age and sex groups. Significant sex–age interaction effects were found for heel-strike hip flexion and ankle in/eversion angles and peak ankle dorsiflexion angle. In older adults, mid-stance knee flexion angle, ankle inversion and abduction moments and hip abduction and external rotation moments differed by sex. Older compared with younger females had reduced coordination variability in the thigh–shank transverse plane couple but greater coordination variability for the shank rotation–foot eversion couple in early stance. These results suggest there may be a non-equivalent aging process in the movement mechanics for males and females. The age and sex differences in running mechanics and coordination variability highlight the need for sex-based analyses for future studies examining injury risk with age.  相似文献   

11.
In the finishing kick of a distance race, maximizing speed becomes the focus even if economy may be sacrificed. If distance runners knew how to alter their technique to become more sprint-like, this process could be more successful. In this study, we compared the differences in technique between sprinters and distance runners while running at equal and maximal speeds. Athletes consisted of 10 Division I distance runners, 10 Division I sprinters, and 10 healthy non-runners. They performed two tests, each consisting of a 60-m run on the track: Test 1 at a set pace of 5.81 m/s, while Test 2 was maximal speed. Video was collected at 180 Hz. Significant differences (P < 0.05) between the sprint and distance groups at maximal speeds were found in the following areas: speed, minimum hip angle, knee extension at toe-off, stride length, contact time, and recovery knee at touchdown. In Test 1, sprinters and distance runners displayed many of the same significant differences. The control group was similar to the distance group in both trials. As distance runners attempt to sprint, the desired adjustments do not necessarily occur. Distance runners may benefit from biomechanical interventions to improve running speed near the end of a race.  相似文献   

12.
Fatigue, developed over the course of a run, may cause changes in running kinematics. Training status may influence the effect of fatigue on running kinematics, since well trained, competitive runners are used to running until exhaustion, whereas novice runners are not. This study aimed to determine changes in running kinematics during an exhaustive run in both novice (NOVICE) and competitive (COMP) long-distance runners. About 15 NOVICE and 15 COMP runners performed a treadmill run, until voluntary exhaustion at 3,200 m time trial pace. Joint angles and global trunk and pelvis angles were recorded at the beginning and at the end of the run. In both groups, peak pelvic anterior tilt, pelvic rotation range of motion (both during stance phase) and ankle plantar flexion during swing phase increased after the exhaustive run. There was a significant interaction effect between group and exhaustion for peak forward trunk lean, which increased only in the NOVICE group, and for hip abduction during mid-swing, which increased in NOVICE and decreased in COMP runners. In conclusion, NOVICE runners showed larger kinematic adjustments when exhausted than COMP runners. This may affect their running performance and should be taken into account when assessing a runner’s injury risk.  相似文献   

13.
The primary study objective was to identify determinants of short-term recovery from a 161-km ultramarathon. Participants completed 400 m runs at maximum speed before the race and on days 3 and 5 post-race, provided a post-race blood sample for plasma creatine kinase (CK) concentration, and provided lower body muscle pain and soreness ratings (soreness, 10-point scale) and overall muscular fatigue scores (fatigue, 100-point scale) pre-race and for 7 days post-race. Among 72 race finishers, soreness and fatigue had statistically returned to pre-race levels by 5 days post-race; and 400 m times at days 3 and 5 remained 26% (P = 0.001) and 12% (P = 0.01) slower compared with pre-race, respectively. CK best modelled soreness, fatigue and per cent change in post-race 400 m time. Runners with the highest CKs had 1.5 points higher (P < 0.001) soreness and 11.2 points higher (P = 0.006) fatigue than runners with the lowest CKs. For the model of 400 m time, a significant interaction of time with CK (P < 0.001) indicates that higher CKs were linked with a slower rate of return to pre-race 400 m time. Since post-race CK was the main modifiable determinant of recovery following the ultramarathon, appropriate training appears to be the optimal approach to enhance ultramarathon recovery.  相似文献   

14.
This study examined the incidence, severity, and timing of gastrointestinal (GI) symptoms in finishers and non-finishers of the 161-km Western States Endurance Run. A total of 272 runners (71.0% of starters) completed a post-race questionnaire that assessed the incidence and severity (none = 0, mild = 1, moderate = 2, severe = 3, very severe = 4) of 12 upper (reflux/heartburn, belching, stomach bloating, stomach cramps/pain, nausea, vomiting) and lower (intestinal cramps/pain, flatulence, side ache/stitch, urge to defecate, loose stool/diarrhoea, intestinal bleeding/bloody faeces) GI symptoms experienced during each of four race segments. GI symptoms were experienced by most runners (96.0%). Flatulence (65.9% frequency, mean value 1.0, s = 0.6 severity), belching (61.3% frequency, mean value 1.0, s = 0.6 severity), and nausea (60.3% frequency, mean value 1.0, s = 0.7 severity) were the most common symptoms. Among race finishers, 43.9% reported that GI symptoms affected their race performance, with nausea being the most common symptom (86.0%). Among race non-finishers, 35.6% reported that GI symptoms were a reason for dropping out of the race, with nausea being the most common symptom (90.5%). For both finishers and non-finishers, nausea was greatest during the most challenging and hottest part of the race. GI symptoms are very common during ultramarathon running, and in particular, nausea is the most common complaint for finishers and non-finishers.  相似文献   

15.
This study examined the haemolytic effects of an interval-based running task in fore-foot and rear-foot striking runners. Nineteen male distance runners (10 fore-foot, 9 rear-foot) completed 8 × 3 min repeats at 90% vVO2peak on a motorised treadmill. Pre- and post-exercise venous blood samples were analysed for serum haptoglobin to quantify the haemolytic response to running. Vertical ground reaction forces were also captured via a force plate beneath the treadmill belt. Haptoglobin levels were significantly decreased following exercise (P = 0.001) in both groups (but not between groups), suggesting that the running task created a haemolytic stress. The ground reaction force data showed strong effect sizes for a greater peak force (= 1.20) and impulse (= 1.37) in fore-foot runners, and a greater rate of force development (= 2.74) in rear-foot runners. The lack of difference in haptoglobin response between groups may be explained by the trend for fore-foot runners to experience greater peak force and impulse during the stance phase of their running gait, potentially negating any impact of the greater rate of force development occurring from the rear-foot runners’ heel strike. Neither type of runner (fore-foot or rear-foot) appears more susceptible to technique-related foot-strike haemolysis.  相似文献   

16.
This study examined the effect of carbohydrate mouth rinsing on endurance running performance in women. Fifteen female recreational endurance runners, who used no oral contraceptives, ran two races of 1-h duration on an indoor track (216-m length) at 18:00 h after an 8-h fast with a 7-days interval between races, corresponding to the 3rd-10th day of each premenopausal runner’s menstrual cycle, or any day for the postmenopausal runners. In a double-blind random order, participants rinsed their mouth with 25 ml of either a 6.4% carbohydrate (RCHO) or a placebo solution (RP). No fluid was ingested during exercise. Serum 17β-Εstradiol (= 0.59) and Progesterone (= 0.35) did not differ between treatments. There was no difference in 1-hour running performance (RCHO: 10,621.88 ± 205.98 m vs. RP: 10,454.00 ± 206.64 m; = 1.784, = 0.096). Furthermore, the mean percentage effect (±99%CI) of RCHO relative to RP, 1.67% (?1.1% to 4.4%), and Cohen’s effect size (d = 0.21) support a trivial outcome of RCHO for total distance covered. In conclusion, carbohydrate mouth rinsing did not improve 60-min track running performance in female recreational runners competing in a low ovarian hormone condition, after an 8-h fast and when no fluid was ingested during exercise.  相似文献   

17.
The purpose of this study was to classify runners in sex-specific groups as either competitive or recreational based on center of mass (CoM) accelerations. Forty-one runners participated in the study (25 male and 16 female), and were labeled as competitive or recreational based on age, sex, and race performance. Three-dimensional acceleration data were collected during a 5-minute treadmill run, and 24 features were extracted. Support vector machine classification models were used to examine the utility of the features in discriminating between competitive and recreational runners within each sex-specific subgroup. Competitive and recreational runners could be classified with 82.63 % and 80.4 % in the male and female models, respectively. Dominant features in both models were related to regularity and variability, with competitive runners exhibiting more consistent running gait patterns, but the specific features were slightly different in each sex-specific model. Therefore, it is important to separate runners into sex-specific competitive and recreational subgroups for future running biomechanical studies. In conclusion, we have demonstrated the ability to analyze running biomechanics in competitive and recreational runners using only CoM acceleration patterns. A runner, clinician, or coach may use this information to monitor how running patterns change as a result of training.  相似文献   

18.
Abstract

The aim of this study was to examine the effect of wearing graduated compression stockings on physiological and perceptual variables during and after intermittent (Experiment 1) and continuous (Experiment 2) running exercise. Fourteen recreational runners performed two multi-stage intermittent shuttle running tests with 1 h recovery between tests (Experiment 1). A further 14 participants performed a fast-paced continuous 10-km road run (Experiment 2). Participants wore commercially available knee-length graduated compression stockings (pressure at ankle 18 – 22 mmHg) beneath ankle-length sports socks (experimental trials) or just the latter (control trials) in a randomized counterbalanced design (for both experiments). No performance or physiological differences were observed between conditions during intermittent shuttle running. During the 10-km trials, there was a reduction in delayed-onset muscle soreness 24 h after exercise when wearing graduated compression stockings (P < 0.05). There was a marked difference in the frequency and location of soreness: two participants in the stockings trial but 13 participants in the control trial indicated soreness in the lower legs. Wearing graduated compression stockings during a 10-km road run appears to reduce delayed-onset muscle soreness after exercise in recreationally active men.  相似文献   

19.
In habitually shod recreational runners, we studied the combined influence of footwear and stretch-shortening cycle (SSC) fatigue on treadmill running pattern, paying special attention to neuro-mechanical adjustments in the acute and 2-day delayed recovery periods. The SSC exercise consisted of a series of 25 sub-maximal rebounds on a sledge apparatus repeated until exhaustion. The acute and delayed functional fatigue effects were quantified in a maximal drop jump test. The neuro-mechanical adjustments to fatigue were examined during two submaximal treadmill run tests of 3 min performed either barefoot or with shoes on. Surface electromyographic (EMG) activities, tibial accelerations and kinematics of the right lower limb were recorded during the first and last 15 s of each run. The main result was that neuro-mechanical differences between the shod and barefoot running patterns, classically reported in the absence of fatigue, persisted in the fatigued state. However, in the delayed recovery phase, rearfoot eversion was found to significantly increase in the shod condition. This specific footwear effect is considered as a potential risk factor of overuse injuries in longer runs. Therefore, specific care should be addressed in the delayed recovery phase of SSC fatigue and the use of motion control shoes could be of interest.  相似文献   

20.
Abstract

The objective of this study was to investigate the effects of wearing compression socks (CS) on performance indicators and physiological responses during prolonged trail running. Eleven trained runners completed a 15.6 km trail run at a competition intensity whilst wearing or not wearing CS. Counter movement jump, maximal voluntary contraction and the oxygenation profile of vastus lateralis muscle using near-infrared spectroscopy (NIRS) method were measured before and following exercise. Run time, heart rate (HR), blood lactate concentration and ratings of perceived exertion were evaluated during the CS and non-CS sessions. No significant difference in any dependent variables was observed during the run sessions. Run times were 5681.1±503.5 and 5696.7±530.7 s for the non-CS and CS conditions, respectively. The relative intensity during CS and non-CS runs corresponded to a range of 90.5–91.5% HRmax. Although NIRS measurements such as muscle oxygen uptake and muscle blood flow significantly increased following exercise (+57.7% and + 42.6%,+59.2% and + 32.4%, respectively for the CS and non-CS sessions, P<0.05), there was no difference between the run conditions. The findings suggest that competitive runners do not gain any practical or physiological benefits from wearing CS during prolonged off-road running.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号