首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Digital microfluidics is an elegant technique based on single droplets for the design, composition, and manipulation of microfluidic systems. In digital microfluidics, especially in the electrowetting on dielectric (EWOD) system, each droplet acts as an independent reactor, which enables a wide range of multiple parallel biological and chemical reactions at the microscale. EWOD digital microfluidics reduces reagent and energy consumption, accelerates analysis, enables point-of-care diagnostic, simplifies integration with sensors, etc. Such a digital microfluidic system is especially relevant for droplet digital PCR (ddPCR), thanks to its nanoliter droplets and well-controlled volume distribution. At low DNA concentration, these small volumes allow less than one DNA strand per droplet on average (limited dilution) so that after a fixed number of PCR cycles (endpoint PCR), only the DNA in droplets containing the sequence of interest has been amplified and can be detected by fluorescence to yield an accurate count of the sequences of interest using statistical models. Focusing on ddPCR, this article summarizes the latest development and research on EWOD technology for droplet PCR over the last decade.  相似文献   

2.
We present a novel use for channel structures in microfluidic devices, whereby two two-phase emulsions, one created on-chip, the other off-chip, are rapidly mixed with each other in order to allow for the coalescence of one emulsion with the other. This approach has been motivated by the difficulty in introducing aqueous cross linking agents into droplets by utilising conventional approaches. These conventional approaches include continuous introduction of the different aqueous reagents before droplet formation or alternatively formation of individual droplets of each reagent and subsequent droplet merging later in the microfluidic device. We show that our approach can decrease the mixing time for these fluidic systems by a factor greater than 10 times when compared to a standard microfluidic channel without structures, thereby also allowing for additional reaction time within the microfluidic device. This method shows an application for microfluidic channel structures not before demonstrated, also demonstrating an alternative method for introducing reagents such as cross linkers which link polymer chains to form particles, and provides an example where enzymes are immobilized in monodisperse particles.  相似文献   

3.
Real-time detection, control, and sorting of microfluidic droplets   总被引:1,自引:0,他引:1  
We report the design and implementation of capacitive detection and control of microfluidic droplets in microfluidic devices. Integrated microfluidic chip(s) with detection∕control circuit enables us to monitor in situ the individual volume of droplets, ranging from nanoliter to picoliter, velocity and even composition, with an operation frequency of several kilohertz. Through electronic feedback, we are able to easily count, sort, and direct the microfluidic droplets. Potential applications of this approach can be employed in the areas of biomicrofluidic processing, microchemical reactions as well as digital microfluidics.  相似文献   

4.
We here present and characterize a programmable nanoliter scale droplet-on-demand device that can be used separately or readily integrated into low cost single layer rapid prototyping microfluidic systems for a wide range of user applications. The passive microfluidic device allows external (off-the-shelf) electronically controlled pinch valves to program the delivery of nanoliter scale aqueous droplets from up to 9 different inputs to a central outlet channel. The inputs can be either continuous aqueous fluid streams or microliter scale aqueous plugs embedded in a carrier fluid, in which case the number of effective input solutions that can be employed in an experiment is no longer strongly constrained (100 s–1000 s). Both nanoliter droplet sequencing output and nanoliter-scale droplet mixing are reported with this device. Optimization of the geometry and pressure relationships in the device was achieved in several hardware iterations with the support of open source microfluidic simulation software and equivalent circuit models. The requisite modular control of pressure relationships within the device is accomplished using hydrodynamic barriers and matched resistance channels with three different channel heights, custom parallel reversible microfluidic I/O connections, low dead-volume pinch valves, and a simply adjustable array of external screw valves. Programmable sequences of droplet mixes or chains of droplets can be achieved with the device at low Hz frequencies, limited by device elasticity, and could be further enhanced by valve integration. The chip has already found use in the characterization of droplet bunching during export and the synthesis of a DNA library.  相似文献   

5.
In this study, we developed a miniaturized microfluidic-based high-throughput cell toxicity assay to create an in vitro model of Parkinson's disease (PD). In particular, we generated concentration gradients of 6-hydroxydopamine (6-OHDA) to trigger a process of neuronal apoptosis in pheochromocytoma PC12 neuronal cell line. PC12 cells were cultured in a microfluidic channel, and a concentration gradient of 6-OHDA was generated in the channel by using a back and forth movement of the fluid flow. Cellular apoptosis was then analyzed along the channel. The results indicate that at low concentrations of 6-OHDA along the gradient (i.e., approximately less than 260 μM), the neuronal death in the channel was mainly induced by apoptosis, while at higher concentrations, 6-OHDA induced neuronal death mainly through necrosis. Thus, this concentration appears to be useful for creating an in vitro model of PD by inducing the highest level of apoptosis in PC12 cells. As microfluidic systems are advantageous in a range of properties such as throughput and lower use of reagents, they may provide a useful approach for generating in vitro models of disease for drug discovery applications.  相似文献   

6.
Droplet based microfluidic systems provide an ideal platform for partitioning and manipulating aqueous samples for analysis. Identifying stable operating conditions under which droplets are generated is challenging yet crucial for real-world applications. A novel three-dimensional microfluidic platform that facilitates the consistent generation and gelation of alginate-calcium hydrogel microbeads for microbial encapsulation, over a broad range of input pressures, in the absence of surfactants is described. The unique three-dimensional design of the fluidic network utilizes a height difference at the junction between the aqueous sample injection and organic carrier channels to induce droplet formation via a surface tension enhanced self-shearing mechanism. Combined within a flow-focusing geometry, under constant pressure control, this arrangement facilitates predictable generation of droplets over a much broader range of operating conditions than that of conventional two-dimensional systems. The impact of operating pressures and geometry on droplet gelation, aqueous and organic material flow rates, microbead size, and bead generation frequency are described. The system presented provides a robust platform for encapsulating single microbes in complex mixtures into individual hydrogel beads, and provides the foundation for the development of a complete system for sorting and analyzing microbes at the single cell level.  相似文献   

7.
Droplet-based microfluidic systems enable a variety of biomedical applications from point-of-care diagnostics with third world implications, to targeted therapeutics alongside medical ultrasound, to molecular screening and genetic testing. Though these systems maintain the key advantage of precise control of the size and composition of the droplet as compared to conventional methods of production, the low rates at which droplets are produced limits translation beyond the laboratory setting. As well, previous attempts to scale up shear-based microfluidic systems focused on increasing the volumetric throughput and formed large droplets, negating many practical applications of emulsions such as site-specific therapeutics. We present the operation of a parallel module with eight flow-focusing orifices in the dripping regime of droplet formation for the generation of uniform fine droplets at rates in the hundreds of kilohertz. Elevating the capillary number to access dripping, generation of monodisperse droplets of liquid perfluoropentane in the parallel module exceeded 3.69 × 105 droplets per second, or 1.33 × 109 droplets per hour, at a mean diameter of 9.8 μm. Our microfluidic method offers a novel means to amass uniform fine droplets in practical amounts, for instance, to satisfy clinical needs, with the potential for modification to form massive amounts of more complex droplets.  相似文献   

8.
Lee DH  Lee W  Um E  Park JK 《Biomicrofluidics》2011,5(3):34117-341179
Precise temporal control of microfluidic droplets such as synchronization and combinatorial pairing of droplets is required to achieve a variety range of chemical and biochemical reactions inside microfluidic networks. Here, we present a facile and robust microfluidic platform enabling uniform interval control of flowing droplets for the precise temporal synchronization and pairing of picoliter droplets with a reagent. By incorporating microbridge structures interconnecting the droplet-carrying channel and the flow control channel, a fluidic pressure drop was derived between the two fluidic channels via the microbridge structures, reordering flowing droplets with a defined uniform interval. Through the adjustment of the control oil flow rate, the droplet intervals were flexibly and precisely adjustable. With this mechanism of droplet spacing, the gelation of the alginate droplets as well as control of the droplet interval was simultaneously achieved by additional control oil flow including calcified oleic acid. In addition, by parallel linking identical microfluidic modules with distinct sample inlet, controlled synchronization and pairing of two distinct droplets were demonstrated. This method is applicable to facilitate and develop many droplet-based microfluidic applications, including biological assay, combinatorial synthesis, and high-throughput screening.  相似文献   

9.
The applicability of droplet-based microfluidic systems to many research fields stems from the fact that droplets are generally considered individual and self-contained reaction vessels. This study demonstrates that, more often than not, the integrity of droplets is not complete, and depends on a range of factors including surfactant type and concentration, the micro-channel surface, droplet storage conditions, and the flow rates used to form and process droplets. Herein, a model microfluidic device is used for droplet generation and storage to allow the comparative study of forty-four different oil/surfactant conditions. Assessment of droplet stability under these conditions suggests a diversity of different droplet failure modes. These failure modes have been classified into families depending on the underlying effect, with both numerical and qualitative models being used to describe the causative effect and to provide practical solutions for droplet failure amelioration in microfluidic systems.  相似文献   

10.
We demonstrate the generation of water-in-water (w/w) jets and emulsions by combining droplet microfluidics and aqueous two-phase systems (ATPS). The application of ATPS in microfluidics has been hampered by the low interfacial tension between typical aqueous phases. The low tension makes it difficult to form w/w droplets with conventional droplet microfluidic approaches. We show that by mechanically perturbing a stable w/w jet, w/w emulsions can be prepared in a controlled and reproducible fashion. We also characterize the encapsulation ability of w/w emulsions and demonstrate that their encapsulation efficiency can be significantly enhanced by inducing formation of precipitates and gels at the w/w interfaces. Our work suggests a biologically and environmentally friendly platform for droplet microfluidics and establishes the potential of w/w droplet microfluidics for encapsulation-related applications.  相似文献   

11.
In this paper, we demonstrate biphasic microfluidic droplets with broadly tunable internal structures, from simple near-equilibrium drop-in-drop morphologies to complex yet uniform non-equilibrium steady-state structures. The droplets contain an aqueous mixture of poly(ethylene glycol) (PEG) and dextran and are dispensed into an immiscible oil in a microfluidic T-junction device. Above a certain well-defined threshold droplet speed, the inner dextran-rich phase is "stirred" within the outer PEG-rich phase. The stirred polymer mixture is observed to exhibit a near continuum of speed and composition-dependent phase morphologies. There is increasing interest in the use of such aqueous two-phase systems in microfluidic devices for biomolecular applications in a variety of contexts. Our work presents a method to go beyond equilibrium phase morphologies in generating microfluidic "multiple" emulsions and at the same time raises the possibility of biochemical experimentation in benign yet complex biomimetic milieus.  相似文献   

12.
The operation of digital microfluidic devices with water droplets manipulated by electrowetting is critically dependent on the static and dynamic stability and lubrication properties of the oil films that separate the droplets from the solid surfaces. The factors determining the stability of the films and preventing surface fouling in such systems are not yet thoroughly understood and were experimentally investigated in this study. The experiments were performed using a standard digital microfluidic cartridge in which water droplets enclosed in a thin, oil-filled gap were transported over an array of electrodes. Stable, continuous oil films separated the droplets from the surfaces when the droplets were stationary. During droplet transport, capillary waves formed in the films on the electrode surfaces as the oil menisci receded. The waves evolved into dome-shaped oil lenses. Droplet deformation and oil displacement caused the films at the surface opposite the electrode array to transform into dimples of oil trapped over the centers of the droplets. Lower actuation voltages were associated with slower film thinning and formation of fewer, but larger, oil lenses. Lower ac frequencies induced oscillations in the droplets that caused the films to rupture. Films were also destabilized by addition of surfactants to the oil or droplet phases. Such a comprehensive understanding of the oil film behavior will enable more robust electrowetting-actuated lab-on-a-chip devices through prevention of loss of species from droplets and contamination of surfaces at points where films may break.  相似文献   

13.
This paper presents a simple-to-construct, low dead volume pump capable of generating a wide range of positive and negative pressures for microfluidic applications. The pump generates pressure or vacuum by changing the volume of air confined inside a syringe and is able to generate pressures between -95 and +300 kPa with a resolution as high as 1 Pa. Different from syringe pumps and electrokinetic pumping, which are capable of controlling flow rates only, our pump can be used to generate constant flow rates or constant pressures, which are required for certain applications such as the aspiration of biological cells for biophysical characterization. Compared to syringe pumps, the new pump has almost zero dead volume and does not exhibit pulsatile flows. Additionally, the system does not require electrical power and is cost effective (~$100). To demonstrate the capabilities of the pump, we used it to aspirate osteoblasts (MC3T3-E1 cells) and to determine Young's modulus of the cells, to generate a concentration gradient, and to produce variable-sized droplets in microchannels using hydrodynamic focusing.  相似文献   

14.
Concurrent droplet charging and sorting by electrostatic actuation   总被引:1,自引:0,他引:1  
This paper presents a droplet-based microfluidic device for concurrent droplet charging and sorting by electrostatic actuation. Water-in-oil droplets can be charged on generation by synchronized electrostatic actuation. Then, simultaneously, the precharged droplets can be electrostatically steered into any designated laminar streamline, thus they can be sorted into one of multiple sorting channels one by one in a controlled fashion. In this paper, we studied the size dependence of the water droplets under various relative flow rates of water and oil. We demonstrated the concurrent charging and sorting of up to 600 droplets∕s by synchronized electrostatic actuation. Finally, we investigated optimized voltages for stable droplet charging and sorting. This is an essential enabling technology for fast, robust, and multiplexed sorting of microdroplets, and for the droplet-based microfluidic systems.  相似文献   

15.
A new microfluidic device with liquid-droplet merging and droplet storage functions for the controlled release of drugs from microcapsules is reported. A switching channel is designed and integrated within the microfluidic device, facilitating the generation and capturing of uniform droplets by the storage chambers. The drug model is the MnCO3 microparticle, which is encapsulated by a microcapsule and fabricated using a simple layer-by-layer nanoassembly process. The merging function is used for dynamically adding the control solution into the droplets, which contain drugs within the microcapsules (DWμCs) and water. The storage chambers are used for collecting DWμCs-laden droplets so that the controlled-drug release in specific droplets can be monitored for an extended period of time, which has been experimentally implemented successfully. This technology could offer a promising technical platform for the long-term observation and studies of drug effects on specific cells in a controlled manner, which is especially useful for single cell analysis.  相似文献   

16.
In this paper, we propose a continuous flow droplet-based microfluidic platform for magnetic particle-based assays by employing in-droplet washing. The droplet-based washing was implemented by traversing functionalized magnetic particles across a laterally merged droplet from one side (containing sample and reagent) to the other (containing buffer) by an external magnetic field. Consequently, the magnetic particles were extracted to a parallel-synchronized train of washing buffer droplets, and unbound reagents were left in an original train of sample droplets. To realize the droplet-based washing function, the following four procedures were sequentially carried in a droplet-based microfluidic device: parallel synchronization of two trains of droplets by using a ladder-like channel network; lateral electrocoalescence by an electric field; magnetic particle manipulation by a magnetic field; and asymmetrical splitting of merged droplets. For the stable droplet synchronization and electrocoalescence, we optimized droplet generation conditions by varying the flow rate ratio (or droplet size). Image analysis was carried out to determine the fluorescent intensity of reagents before and after the washing step. As a result, the unbound reagents in sample droplets were significantly removed by more than a factor of 25 in the single washing step, while the magnetic particles were successfully extracted into washing buffer droplets. As a proof-of-principle, we demonstrate a magnetic particle-based immunoassay with streptavidin-coated magnetic particles and fluorescently labelled biotin in the proposed continuous flow droplet-based microfluidic platform.  相似文献   

17.
Dilution of microfluidic droplets where the concentration of a reagent is incrementally varied is a key operation in drop-based biological analysis. Here, we present an electrocoalescence based dilution scheme for droplets based on merging between moving and parked drops. We study the effects of fluidic and electrical parameters on the dilution process. Highly consistent coalescence and fine resolution in dilution factor are achieved with an AC signal as low as 10 V even though the electrodes are separated from the fluidic channel by insulator. We find that the amount of material exchange between the droplets per coalescence event is high for low capillary number. We also observe different types of coalescence depending on the flow and electrical parameters and discuss their influence on the rate of dilution. Overall, we find the key parameter governing the rate of dilution is the duration of coalescence between the moving and parked drop. The proposed design is simple incorporating the channel electrodes in the same layer as that of the fluidic channels. Our approach allows on-demand and controlled dilution of droplets and is simple enough to be useful for assays that require serial dilutions. The approach can also be useful for applications where there is a need to replace or wash fluid from stored drops.  相似文献   

18.
Precise patterning of metals is required for diverse microfluidic and microelectromechanical system (MEMS) applications ranging from the separation of proteins to the manipulation of single cells and drops of water-in-oil emulsions. Here we present a very simple, inexpensive method for fabricating micropatterned electrodes. We deposit a thin metal layer of controlled thickness using wet chemistry, thus eliminating the need for expensive equipment typically required for metal deposition. We demonstrate that the resulting deposited metal can be used to fabricate functional electrodes: The wet-deposited metal film can sustain patterning by photolithography down to micron-sized features required for MEMS and microfluidic applications, and its properties are suitable for operative electrodes used in a wide range of microfluidic applications for biological studies.  相似文献   

19.
Although digital detection of nucleic acids has been achieved by amplification of single templates in uniform microfluidic droplets and widely used for genetic analysis, droplet-based digital detection of proteins has rarely been reported, largely due to the lack of an efficient target amplification method for protein in droplets. Here, we report a key step towards digital detection of proteins using a highly parallel microfluidic droplet approach for single enzyme molecule detection in picoliter droplets via enzyme catalyzed signal amplification. An integrated microfluidic chip was designed for high throughput uniform droplet generation, monolayer droplet collection, incubation, detection, and release. Single β-galatosidase (β-Gal) molecules and the fluorogenic substrate fluorescein di-β-D-galactopyranoside were injected from two separated inlets to form uniform 20 μm droplets in fluorinated oil at a frequency of 6.6 kHz. About 200 000 droplets were captured as a monolayer in a capture well on-chip for subsequent imaging detection. A series of β-Gal solutions at different concentrations were analyzed at the single-molecule level. With no enzyme present, no droplets were found to fluoresce, while brightly fluorescent droplets were observed under single-enzyme molecule conditions. Droplet fluorescence intensity distribution analysis showed that the distribution of enzyme molecules under single-molecule conditions matched well with theoretical prediction, further proving the feasibility of detecting single enzyme molecules in emulsion droplets. Moreover, the population of fluorescent droplets increased as the β-Gal concentration increased. Based on a digital counting method, the measured concentrations of the enzyme were found to match well with input enzyme concentration, establishing the accuracy of the digital detection method for the quantification of β-Gal enzyme molecules. The capability of highly parallel detection of single enzyme molecules in uniform picoliter droplets paves the way to microdroplet based digital detection of proteins.  相似文献   

20.
Thrombin, which has the leading role in the blood coagulation cascade, is an important biomarker in hemostasis and cardiovascular disease (CVD) development. In this study, a measurement system capable of continuously monitoring individual thrombin generation using droplet microfluidic technology is manipulated. The thrombin generation assay based on fluogenic substrate is performed within the droplets and the thrombin generation curve of plasma sample activated by tissue factor is measured in real-time to reflect the sample conditions dynamically. The injection of the inhibitor of thrombin generation is developed to assay the inhibited curve which relates to thrombin self-inhibition in biological systems. This microfluidic system is integrated with the microdialysis probe, which is useful to connect to the living animals for future in vivo real time thrombin measurements for rapid CVD diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号