首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.

Purpose

Drawing from literature on innovation, strategy and culture the objective of this study is to explore the role of perceived potentials and perceived strategic importance on CIOs’ perspective on RFID technology in two different cultural settings.

Methodology

Based on survey responses from 463 German and 157 Italian IT decision makers we analyzed the data with PLS structural equation modeling.

Findings

We show that perceived potentials of RFID influence the perceived strategic importance which positively influences CIOs’ intention to invest in RFID. The composition of perceived potentials affecting the strategic importance of RFID differs significantly in both cultures. In Germany, potentials attributed to RFID are improving quality, automating manpower, reducing counterfeits, and improving customer service. Italian CIOs value reducing stock inconsistencies, optimizing stock keeping, and improving customer service as RFID potentials. Regardless of culture, findings show that company size hardly has impact on perceived strategic importance.

Originality/value

This research shows on a large empirical basis cultural differences in the perception of RFID in two countries using PLS.  相似文献   

2.

Propose

In this study, existing conditions, problems, and expectations in the application of electronic records management in Turkey are evaluated on the basis of the data obtained from 17 institutions. The main goal of the study is to define to what extent the applications in information and records services in electronic environment are compatible with the expectations.

Design/methodology/approach

In this study, data were collected from surveys conducted in Turkey within the framework of the project InterPARES. Action research methodology was used in the study. The survey data were obtained from 17 institutions and results were evaluated in SPSS after their content analysis was conducted. The analysis was carried out in order to identify the conditions and problems in institutional electronic records management.

Findings

Problems in coordination of services, integration and independence of information systems, administrative arrangements, and lack of professional personnel were detected within the institutions, and it is seen that transition to the secure application of e-signature is of first priority.

Originality/value

This study contains analysis data about different institutions on ERM applications within the framework of an international project.  相似文献   

3.

Purpose

The study reported in this paper reviewed the literatures of information science, psychology, sociology, political science, education, and communication science to analyze Compelled Nonuse of Information (CNI). This study of a behavior defined by its absence (i.e., the not using of information) involved the development of a methodology consisting of an iterative performance of a nine-step heuristic leading to a retroductive recognition of absence, here termed RRA.

Principal results

The study concluded with a hierarchical taxonomy of the mechanisms that compel a person not to use information. The six primary mechanisms are:
1.
Intrinsic somatic (bodily) conditions
2.
Socio-environmental barriers
3.
Authoritarian controls
4.
Threshold knowledge shortfall
5.
Attention shortfall
6.
Information filtering.

Major conclusions

The resultant taxonomy of CNI appears here as a comprehensive checklist with which information workers such as the teacher, librarian, advertiser, politician, or health care professional can respond efficiently and effectively to situations of nonuse of information. For example, a teacher might ask: “Why are students not responding to what I present?” Further, the social implications of any compelled behavior touch the very basis of the social contract, and this paper presents a first step toward understanding the compelled aspects of CNI.  相似文献   

4.

Context

In this article we considered knowledge transfer (KT) in global software development (GSD) from two perspectives, state-of-the-art and state-of-the-practice, in order to identify what are the challenges that hamper the success of KT in global software teams, as well as to find out what are the mitigation strategies that can be used to overcome such challenges.

Objectives

The overall aim of this work is to provide a body of knowledge for enabling successful KT in GSD settings. This is achieved by an in-depth understanding of KT challenges and mitigation strategies, both from the perspective of literature and industry. It also identifies the similarities and differences in challenges and strategies gathered from literature studies and industrial experts.

Methods

In order to fulfill the aim of the research, we collected data through a systematic literature review (SLR) and conducted interviews with industrial experts. Through the SLR we found 35 primary studies relevant to our objectives. We also conducted eight interviews of experienced industrial professionals from eight different multinational companies world-wide. For analyzing the data we used grounded theory and cross-case analysis.

Results

In total, 60 different challenges and 79 unique mitigation strategies are identified from both SLR and interview results. The challenges and mitigation strategies are grouped into three core categories of personnel, project and technology factors, thus giving rise to a conceptualization called as 2PT factors. There are greater numbers of challenges and mitigation strategies in the project and personnel factors, highlighting the complex interplay of project-related and human-intensive issues in GSD projects, while the technology factor plays the role as facilitator in transferring knowledge. The study also maps the mitigation strategies to challenges, which can guide practitioners in their selection of strategies to use for overcoming KT challenges in GSD.

Conclusions

We conclude that effective management of project and personnel factors, facilitated by technological factors, are crucial for a successful transfer of knowledge in GSD projects. Thus in future, the researchers and practitioners need to focus on the 2PT factors for ensuring effective KT in GSD settings.  相似文献   

5.
6.
基于公众满意度的电子政务信息服务研究   总被引:2,自引:0,他引:2  
本文从公众满意度角度分析电子政务信息服务中出现的问题,使用调查问卷对保定市电子政务进行比较全面的调查,运用CCSI模型对实证中保定市电子政务信息服务问题进行分析,并通过模糊综合评价法对保定市电子政务信息服务公众满意度进行计算。在此基础上提出我国电子政务信息服务的改进原则与措施。  相似文献   

7.
8.

Introduction

The aim of this study was to identify clinical variables which may be independently associated with positivity of a cardiac troponin I (cTnI) assay in a large population of patients admitted to the emergency department (ED).

Materials and methods

3166 subjects, with at least two troponin I tests ordered within 6 hours in the ED, were studied. Patient data were statistically analyzed to identify clinical associations with increased values of Troponin I.

Results

Although patients with diagnosis of acute coronary syndrome displayed troponin I values significantly higher than those of other groups, positivity to troponin I (> 40 ng/L) was also observed in patients with other clinical conditions. In multivariate analysis, age, elevated heart rate and electrocardiographyc changes were independently associated with troponin I positivity at admission. In the whole study population troponin I positivity exhibited high sensitivity and negative predictive value, counterbalanced by low specificity and limited positive predictive value.

Conclusions

Troponin I positivity should be combined with history and clinical evaluation and cautiously interpreted in the ED, especially in patients exhibiting factors associated with higher troponin I levels such as older age, elevated heart rate or ECG changes.Key words: troponin I, acute coronary syndrome, emergency service, hospital, chest pain  相似文献   

9.

Introduction:

Continuing professional development (CPD) with corresponding crediting system is recognized as essential for the laboratory medicine specialists to provide optimal service for the patients. Article presents results of the survey evaluating current CPD crediting practice among members of European Federation of Clinical Chemistry and Laboratory Medicine (EFLM).

Materials and methods:

A questionnaire had been forwarded to presidents/national representatives of all EFLM members, with invitation to provide information about CPD programmes and crediting policies, as well as feedback on individual CPD categories, through scoring their relevance.

Results:

Complete or partial answers were received from 28 of 38 members. In 23 countries, CPD programmes exist and earn credits, with 19 of them offering access to non-medical scientists. CPD activities are evaluated in all participating countries, regardless to the existence of an official CPD programme. Among participating members with mandatory specialists’ licensing (22/28), CPD is a prerequisite for relicensing in 13 countries. Main categories recognized as CPD are: continuing education (24 countries), article/book (17/14 countries) authorship and distance learning (14 countries). The highest median score of relevance (20) is allocated to professional training, editor/authorship and official activities in professional organizations, with the first category showing the least variation among scores.

Conclusions:

Majority of EFLM members have developed CPD programmes, regularly evaluated and accompanied by crediting systems. Programmes differ in accessibility for non-medical scientists and impact on relicensing eligibility. Continuing education, authorship and e-learning are mainly recognized as CPD activities, although the professional training is appreciated as the most important individual CPD category.  相似文献   

10.
We present a simple method for creating monodisperse emulsions with microfluidic devices. Unlike conventional approaches that require bulky pumps, control computers, and expertise with device physics to operate devices, our method requires only the microfluidic device and a hand-operated syringe. The fluids needed for the emulsion are loaded into the device inlets, while the syringe is used to create a vacuum at the device outlet; this sucks the fluids through the channels, generating the drops. By controlling the hydrodynamic resistances of the channels using hydrodynamic resistors and valves, we are able to control the properties of the drops. This provides a simple and highly portable method for creating monodisperse emulsions.Droplet-based microfluidic devices use micron-scale drops as “test tubes” for biological reactions.1, 2, 3 With the devices, the drops are loaded with cells, incubated to stimulate cell growth, picoinjected to introduce additional reagents, and sorted to extract rare specimens.4, 5, 6 This allows biological reactions to be performed with greatly enhanced speed and efficiency over conventional approaches: by reducing the drop volume, only picoliters of reagent are needed per reaction, while through the use of microfluidics, the reactions can be executed at rates exceeding hundreds of kilohertz. This combination of incredible speed and efficient reagent usage is attractive for a variety of applications in biology, particularly those that require high-throughput processing of reactions, including cell screening, directed evolution, and nucleic acid analysis.7, 8 The same advantages of speed and efficiency would also be beneficial for applications in the field, in which the amount of material available for testing is limited, and results are needed with short turnaround. However, a challenge to using these techniques in field applications is that the control systems developed to operate the devices are intended for use in the laboratory: to inject fluids, mechanical pumps are needed, while computers must adjust flow rates to maintain optimal conditions in the device.9, 10, 11, 12 In addition to significantly limiting the portability of the system, these qualities make them impractical for use outside the laboratory. For droplet-based microfluidic techniques to be useful for applications in the field, a general, robust, and portable system for operating them is needed.In this paper, we introduce a general, robust, and portable system for operating droplet-based microfluidic devices. In this system, which we call syringe-vacuum microfluidics (SVM), we load the reagents needed for the emulsion into the inlets of a microfluidic drop maker; using a standard plastic syringe, we generate a vacuum at the outlet of the drop maker,13 sucking the reagents through the channels, generating drops, and transporting them to different regions for visualization and analysis. By controlling the vacuum strength and channel resistances using hydrodynamic resistors14, 15, 16 and single-layer membrane valves,17, 18 we are able to specify the flow rates in different regions of the device and to adjust them in real time. No pumps, control computers, or electricity is needed for these operations, making the entire system portable and of potential use for field applications. To characterize the adjustability and precision of this system, we vary channel resistances and vacuum pressures while measuring the effects on drop size and production frequency. We also show how to use this to form drops of many distinct reagents simultaneously using only a single vacuum syringe.Monodisperse drop formation is the central operation in droplet-based microfluidics but can be quite challenging due to the need for precise, steady pumping of reagents; forming monodisperse drops with controlled properties is thus a stringent demonstration of the effectiveness of a control system. While there are many geometries available for microfluidic drop formation,19 in this discussion we use a simple cross-junction for its proven ability to form uniform emulsions at high rates of speed,20, 21 a schematic of which is shown in Fig. Fig.1.1. The devices are fabricated in poly(dimethylsiloxane) (PDMS) using soft lithography.22 The drop formation channels have dimensions of 25 μm in width and 25 μm in height. To enable production of aqueous drops in oil, which are the most useful for biological assays, we require hydrophobic devices, which we achieve using an Aquapel chemical treatment: we flow Aqualpel through the channels for a few seconds, flush with air, and then bake the devices for 20 min at 65 °C. After this treatment, the channels are permanently hydrophilic, as is needed for forming aqueous-in-oil emulsions. To introduce reagents into the device, we use 200 μl plastic pipette tips inserted into the channel inlets. To apply the suction, we use a 10 ml Bectin-Dickenson plastic syringe coupled to the device through a 16 G needle and PE∕5 tubing. The other end of the tubing is inserted into the outlet of the device.Open in a separate windowFigure 1Schematic of the microfluidic drop maker for use with SVM. To form water drops in oil, the device must be hydrophobic, which we achieve by treating the channels with Aquapel. The water and surfactant-containing oil are loaded into pipette tips inserted into the device inlets at the locations indicated. To pump the fluids through the drop maker, a syringe applies a vacuum to the outlet; this sucks the fluids through the drop maker, forming drops. The drops are collected into the suction syringe, where they can be stored, incubated, and reintroduced into a microfluidic device for additional processing.To begin forming drops, we fill the device with HFE-7500 fluorocarbon oil, displacing trapped air bubbles that could restrict flow and interfere with drop formation. Pipette tips containing reagents are then inserted into the device inlets, as shown in Fig. Fig.11 and pictured in Fig. Fig.2a;2a; during this step, care must be taken to not trap air bubbles under the pipette tips, as they would restrict flow. For the fluids, we use distilled water for the droplet phase and HFE-7500 with the ammonium salt of Krytox 157 FSL at 1.8 wt % for the continuous phase. The suction syringe is then connected to the device outlet; to initiate drop formation, the piston is pulled outward and locked in place with a 1 in. binder clip, as shown in Fig. Fig.2a.2a. This expands the air in the syringe, generating a vacuum that is transferred to the device through tubing. Since the inlet reagents are open to the atmosphere and thus maintained at a pressure of 1 atm, this creates a pressure differential through the device that pumps the fluids. As the fluids flow through the cross-channel, forces are generated that create drops, as shown in Fig. Fig.2b2b (enhanced online). Due to the very steady flow, the drops are highly monodisperse, as shown in Fig. Fig.2c.2c. After they are formed, the drops flow out of the device through the suction tube and are collected into the syringe. Depending on the emulsion formulation, drops may coalesce on the metal needle of the syringe; if so, an Upchurch fitting should be used to couple the tubing instead. The collected drops can be stored in the syringe, incubated, and reintroduced into additional microfluidic devices, as needed for the assay.Open in a separate windowFigure 2Photograph of the microfluidic drop formation device with pipette tips containing emulsion reagents and vacuum syringe for pumping (a). Distilled water is used for the droplet phase and HFE-7500 fluorocarbon oil with fluorinated surfactant for the continuous phase. The vacuum applies a pressure differential through the device that pumps the fluids through the drop maker (b) forming drops. The drops are monodisperse, due to the controlled properties of drop formation in microfluidics (c). The scale bars denote 50 μm (enhanced online).In many biological applications, drop size must be precisely controlled. This is essential, for example, when encapsulating molecules or cells in the drops, in which the number encapsulated depends on the drop size.3, 23, 24 With SVM, the drop size can be precisely controlled. Our strategy to accomplish this is motivated by the physics of microfluidic drop formation. In microfluidic devices, the capillary number of the flow is normally small, Ca<0.1; as a consequence, the drop formation physics follows a plugging∕squeezing mechanism, in which the drop size depends on the flow rate ratio of the dispersed-to-continuous phase.20, 25 By adjusting this ratio, we can thus control the drop size. To adjust this ratio, we use hydrodynamic resistor channels.14, 15, 16 These channels are analogous to electronic resistors in that for a fixed pressure drop (voltage) the flow rate through them (current) is inversely proportional to their resistance. By making the resistors longer or shorter, we adjust their resistance, thereby controlling the flow rate.To use resistors to control the drop size, we place three on the inlets of the cross-junction, at the locations indicated in Fig. Fig.3a.3a. In this configuration, the flow rate ratio depends on the resistances of the central and side resistors: shortening the side resistors increases the continuous phase flow rate with respect to the dispersed phase, thereby reducing the ratio and, consequently, the drop size, whereas lengthening it increases the drop size. By varying the ratio, we produce drops over a range of sizes, as shown in Fig. Fig.3b3b (enhanced online). The drop size is linear in the resistance ratio, indicating that it is linear in the flow rate ratio, as is expected for plugging∕squeezing drop formation [Fig. [Fig.3b3b].20, 25 This behavior is identical to that of pump-driven fluidics, demonstrating that SVM affords similar control.Open in a separate windowFigure 3Drop properties can be controlled using resistor channels. The resistors are placed on the inlets of the drop maker at the locations indicated in (a). The resistors enable the flow rates of the inner and continuous phases to be controlled. By varying the length ratio of the inlet resistors, we control the flow rate ratio in the drop maker. This allows the drop volume to be controlled, as shown by drop volume plotted as a function of inlet resistor length ratio in (b); varying this ratio does not significantly affect the drop formation frequency, as shown in (c). By varying the length of the outlet resistor, we control the total flow rate through the device; this allows us to form drops of constant volume, but at a different formation frequency, as shown by the plots of volume and frequency as a function of the inverse of the outlet resistor length in (d) and (e), respectively. The measured hydrodynamic resistance of a resistor channel with water as a function of length is shown as inset into (d) (enhanced online).We can also control the frequency of the drop formation using resistor channels. We place a resistor on the outlet of the device; this sets the total flow rate through the device, thereby adjusting drop frequency, as shown in Fig. Fig.3e3e (enhanced online). To confirm that the size and frequency control are independent, we plot size as a function of the outlet resistance and frequency as a function of the resistance ratio [Figs. [Figs.3c,3c, ,3d];3d]; both are constant as a function of these parameters, again demonstrating independent control. Frequency can also be adjusted by changing the strength of the vacuum, which can be accomplished by loading a prescribed volume of air into the syringe before expansion. In this case, the vacuum pressure applied is Pfin=VinVfin×Pin, where Vin is the initial volume of air in the syringe, Vfin is the volume after expansion, and Pin is the initial pressure, which is 1 atm. By loading a prescribed volume of air into the syringe before connecting it to the device and pulling the piston, the expansion factor can be reduced, thereby lowering the vacuum strength.The flow rates through the microfluidic device depend on the applied pressure differential, which, in turn, depends on the value of the ambient pressure. Since ambient pressure may vary due to differences in altitude, the drop formation may also vary. However, since ambient pressure variations affect the inner and outer phase flows equally, this should alter the total flow rate but not the flow rate ratio. Consequently, we expect it to alter drop formation frequency but not drop size because while the frequency depends on absolute flow rate [as illustrated by Fig. Fig.3e],3e], drop size depends on the flow rate ratio [as illustrated in Fig. Fig.3b].3b]. Based on normal variations in atmospheric pressure on the surface of the Earth, we expect this to produce differences in the drop formation frequency of ∼25%, for example, when operating a device at sea level compared to at the top of a moderately sized mountain.Resistor channels allow drop properties to be controlled, equivalent to what is possible with pump-driven flow; however, they do not allow real-time control because their dimensions are fixed during the fabrication. Real-time control is often needed, for example, as it is when performing reactions in drops for the first time, in which the optimal drop size is not known. To enable real-time control, we must adjust flow rates, which can be achieved using the fluidic analog of electronic potentiometers. Single-layer membrane valves are analogous fluidic components, consisting of a control channel that abuts a flow channel.17, 18 By pressurizing the control channel, the thin PDMS membrane between these channels is deflected laterally, constricting the flow channel, thereby increasing its hydrodynamic resistance and reducing its flow rate.18 To use these membrane valves to vary drop size, we replace the inlet resistors with inlet valves, as shown in Fig. Fig.4a.4a. To set the flow rate through a path, we actuate the valve with a defined pressure. To actuate the valves, we use air-filled syringes: a 1 ml syringe is filled with air and connected to the valve control channel through tubing; an additional component, a three-way stopcock is inserted between the syringe and needle, allowing the pressure to be locked in after optimal actuation conditions are obtained. We use one syringe to control the dispersed phase valves and another to control the continuous phase valves. The valves are pressurized by compressing the air in the syringes to a defined degree using the marked graduations; this is achieved by pressing the piston to a defined graduation mark, compressing the air contained within it, thus increasing pressure. The stopcock is then switched to the off position, locking in the actuation. This simple scheme allows precise actuation of the valves, for accurate, defined flow rates in the drop maker, and controlled drop size, as shown in Figs. Figs.4b,4b, ,4c4c (enhanced online). The drop size can be varied at a rate of several hertz without noticeable loss of control; moreover, changing the drop size does not affect the frequency, indicating that, again, these properties are independent, as shown by the constant drop frequency with varying pressure ratio in Fig. Fig.4d4d.Open in a separate windowFigure 4Single-layer membrane valves allow the drop size to be varied in real time to screen for optimal reaction conditions. The valves are positioned on the inner and side inlets, as indicated in (a). By adjusting the actuation pressures of the valves, we vary the flow rates in the drop maker, thereby changing the drop size (b), as shown by the plot of drop volume as a function of the actuation pressure ratio in (c). Varying the inlet resistance ratio does not significantly alter drop formation frequency, as shown by frequency as a function of the pressure ratio in (d). A movie of drop formation during actuation of the valves are available in the supplemental material (Ref. 29). The scale bars denote 100 μm (enhanced online).Another useful attribute of SVM is that it readily lends itself to parallel drop formation26 because the pressure that pumps the fluids through the channels is supplied by the atmosphere and is applied evenly over the whole outer surface of the device. This allows fluids to be introduced at equal pressures from different inlets, for forming drops with identical properties in different drop makers. To illustrate this, we use a parallel drop formation device to emulsify eight distinct reagents simultaneously; the product of this is an emulsion library, consisting of drops of identical size in which different drops encapsulate distinct reagents, useful for certain biological applications of droplet-based microfluidics.7 The microfluidic device consists of eight T-junction drop makers.25 The drop makers share one oil inlet and outlet but each has its own inner-phase inlet, as shown in Fig. Fig.5.5. The oil and outlet channels are wide, ensuring negligible pressure drop through them, so that all T-junctions are operated under the same flow conditions. A distinct reagent fluid is introduced into the inner phase of each T-junction, for which we use eight concentrations of the dye Alexa Fluor 680 in water. After loading these solutions into the device through pipette tips, a syringe applies the vacuum to the outlet, sucking the reagents through the T-junctions, forming drops, as shown by the magnified images of the T-junctions during drop formation in Fig. Fig.5.5. Since the drop makers are identical and operated under the same flow conditions, the drops formed are of the same size, as shown in the magnified images in Fig. Fig.55 and in a movie available in the supplemental material.29Open in a separate windowFigure 5Parallel drop formation device consisting of eight T-junction drop makers. The drop makers share a common oil inlet and outlet, both of which are wide to ensure even pressure distribution to all drop makers; support posts prevent these channels from collapsing under the suction. Each drop maker has its own inner-phase inlet, allowing emulsification of a distinct reagent. Since the drop maker dimensions and pressure differentials are constant through all drop makers, the drops formed are of the same size, as shown in the magnified images. The drops are ∼35 μm in diameter.To verify that the dye solutions are successfully encapsulated, we image a sample of the collected drops with a fluorescent microscope. The drops are confined in a monolayer between two glass plates so they can be individually imaged. They are of the same size but have distinct fluorescence intensities, as shown in Fig. Fig.6a.6a. To quantify these differences, we measure the intensity of each drop and plot the results as a histogram [see Fig. Fig.6b].6b]. There are eight peaks in the histogram, corresponding to the eight dye concentrations, demonstrating that all dyes are encapsulated successfully. The peak areas are also similar, demonstrating that drops of different types are formed in equal amounts due to the uniformity of the parallel drop formation.Open in a separate windowFigure 6Fluorescent microscope image of emulsion library created with parallel T-junction device (a). In this demonstration, eight concentrations of Alexa Fluor 680 dye are emulsified simultaneously, producing an emulsion library of eight elements. The drops are of the same size but encapsulate distinct concentrations of the dye solution, as demonstrated by the eight peaks in the intensity histograms in (b). The scale bar denotes 100 μm.SVM is a simple, accessible, and highly controlled way to form monodisperse emulsions for biological assays. It allows controlled amounts of different reagents to be encapsulated in individual drops, drop size to be precisely controlled, and the ability to form drops of different reagents at the same time, in a parallel drop formation device. These properties should make SVM useful for biological applications of monodisperse emulsions;1, 2, 3 the portability of SVM should also make it useful for applications in the field, particularly when no electrical power source is available. The parallel emulsification technique should also be useful for particle templating from drops, in which the particles must be of the same size but composed of distinct materials.26, 27, 28, 29  相似文献   

11.
Nowadays, microfluidics is attracting more and more attentions in the biological society and has provided powerful solutions for various applications. This paper reported a microfluidic strategy for aqueous sample sterilization. A well-designed small microchannel with a high hydrodynamic resistance was used to function as an in-chip pressure regulator. The pressure in the upstream microchannel was thereby elevated which made it possible to maintain a boiling-free high temperature environment for aqueous sample sterilization. A 120 °C temperature along with a pressure of 400 kPa was successfully achieved inside the chip to sterilize aqueous samples with E. coli and Staphylococcus aureus inside. This technique will find wide applications in portable cell culturing, microsurgery in wild fields, and other related micro total analysis systems.Microfluidics, which confines fluid flow at microscale, attracts more and more attentions in the biological society.1–4 By scaling the flow domain down to microliter level, microfluidics shows attractive merits of low sample consumption, precise biological objective manipulation, and fast momentum/energy transportation. For example, various cell operations, such as culturing5–7 and sorting,8–10 have already been demonstrated with microfluidic approaches. In most biological applications, sterilization is a key sample pre-treatment step to avoid contamination. However, as far as the author knew, this important pre-treatment operation is generally achieved in an off-chip way, by using high temperature and high pressure autoclave. Actually, microfluidics has already been utilized to develop new solution for high pressure/temperature reactions. The required high pressure/temperature condition was generated either by combining off-chip back pressure regulator and hot-oil bath,11,12 or by integrating pressure regulator, heater, and temperature sensor into a single chip.13 This work presented a microfluidic sterilization strategy by implementing the previously developed continuous flowing high pressure/temperature microfluidic reactor.Figure Figure11 shows the working principle of the present microfluidic sterilization chip. The chip consists of three zones: sample loading (a microchannel with length of 270 mm and width of 40 μm), sterilization (length of 216 mm and width of 100 μm), and pressure regulating (length of 42 mm and width of 5 μm). Three functional zones were separated by two thermal isolation trenches. The sample was injected into the chip by a syringe pump and experienced two-step filtrations (feature sizes of 20 μm and 5 μm, not shown in Figure Figure1)1) at the entrance to avoid the channel clog. All channels had the same depth of 40 μm. According to the Hagen–Poiseuille relationship,15 the pressure regulating channel had a large flow resistance (around 1.09 × 1017 Pa·s/m3, see supplementary S1 for details16) because of its small width, thereby generated a high working pressure in the upstream sterilization channel under a given flow rate. The boiling point of the solution will then be raised up by the elevated pressure in the sterilization zone followed by the Antoine equation.16 By integrating heater/temperature sensors in the pressurized zone, a high temperature environment with temperature higher than 100 °C can thereby be realized for aqueous sample sterilization. The sample was collected from the outlet and cultured at 37 °C for 12 h. Bacterial colony was counted to evaluate the sterilization performance.Open in a separate windowFIG. 1.Working principle of the present microfluidic sterilization. Only microfluidic channel, heater, and temperature sensor were schematically shown. The varied colour of the microchannel represents the pressure and that of the halation stands for the temperature.Fabrication of this chip has been introduced elsewhere.14 The fabricated chip and the experimental system are shown in Figure Figure2.2. There were two inlets of the chip. While, in the experiment, only one inlet used and connected to the syringe pump. The backup one was blocked manually. The sample load zone was arranged in between of the sterilization zone and the pressure regulating zone based on thermal management consideration. A temperature control system (heater/temperature sensor, power source, and multi-meter) was setup to provide the required high temperature. The heater and the temperature sensor were microfabricated Pt resistors. The temperature coefficient of resistance (TCR) was measured as 0.00152 K−1.Open in a separate windowFIG. 2.The fabricated chip and the experimental system. (a) Two chips with a penny for comparison. The left chip was viewed from the heater/temperature sensor side, while the right one was observed from the microchannel side (through a glass substrate). (b) The experimental system.Thermal isolation performance of the present chip before packaging with inlet/outlet was shown in Figure Figure3,3, to show the thermal interference issue. The results indicated that when the sterilization zone was heated up to 140 °C, the pressure regulating zone was about 40 °C. At this temperature, the viscosity of water decreases to 0.653 mPa·s from 1.00 mPa·s (at 20 °C), which will make the pressure in the sterilization zone reduced from 539 kPa (calculated at 20 °C and flow rate of 4 nl/s) to 387 kPa. The boiling point will then decrease to 142.8 °C, which will guarantee a boiling-free sterilization. In the cases without the thermal isolation trenches, the temperature of the pressure regulating zone reached as high as 75 °C because of the thermal interference from the sterilization zone, as shown in Figure Figure3.3. The pressure in the sterilization zone was then reduced to 268 kPa (calculated at flow rate of 4 nl/s) and the boiling temperature was around 130 °C, which was lower than the set sterilization temperature. Detail calculation can be found in supplementary S2.16Open in a separate windowFIG. 3.The temperature distribution of the chips (before packaged) with and without thermal isolation trenches (powered at 1 W). The data were extracted from the central lines of infrared images, as shown as inserts.Bacterial sterilization performance of the present chip was tested and the experimental results were shown in Figure Figure4.4. E. coli with initial concentration of 106/ml was pumped into and flew through the chip with the sterilization temperatures varied from 25 °C to 120 °C at flow rates of 2 nl/s and 4 nl/s. The outflow was collected and inoculated onto the SS agar plate evenly with inoculation loops. The population of bacteria in the outflow was counted based on the bacterial colonies after incubation at 37 °C for 12 h. Typical bacterial colonies were shown in Figure Figure4.4. The low flow rate case showed a better sterilization performance because of the longer staying period in the sterilization channel. The population of E. coli was around 1.25 × 104/ml after a 432 s-long, 70 °C sterilization (at flow rate of 2 nl/s). While at the flow rate of 4 nl/s, the cultivation result indicated the population was around 3.8 × 104/ml because the sterilization time was shorten to 216 s. A control case, where the solution flew through an un-heated chip at 2 nl/s, was conducted to investigate the effect of the shear stress on the sterilization performance (see the supplementary S3 for details16). As listed in Table TableI,I, the results indicated that the shear stress did not show any noticeable effect on the bacterial sterilization. When the chip was not heated, i.e., the case with the largest shear stress because of the highest viscosity of fluid, the bacterial cultivation was nearly the same as the off-chip results (no stress). The temperature has the most significant effect on the sterilization performance. No noticeable bacteria proliferation was observed in the cases with the sterilization temperature higher than 100 °C, as shown in Figure Figure44.

Table I.

The E. coli cultivation results under different flow rates and sterilization temperatures. a
 25 °C70 °C100 °C120 °C25 °C b
2 nl/s1.89/+++1.38/+1.16/−1.04/−0/+++
4 nl/s3.78/+++2.76/+2.32/−2.08/−0/+++
Open in a separate windowaData in the table are shear stress (Pa)/population of bacteria, where “+++” indicates a large proliferation, “+” means small but noticeable proliferation, “−” represents no proliferation.bOff-chip control group.Open in a separate windowFIG. 4.Sterilization performance of the present chip with E. coli and S. aureus as test bacteria. All the original population was 106/ml. Inserted images showed the images of the culture disk after bacteria incubation.Sterilization of another commonly encountered bacterium, Staphylococcus aureus, with initial population of 106/ml was also tested in the present chip, as shown in Figure Figure4.4. Similarly, no noticeable S. aureus proliferation was found when the sterilization temperature was higher than 100 °C.In short, we demonstrated a microfluidic sterilization strategy by utilizing a continuous flowing high temperature/pressure chip. The population of E. coli or S. aureus was reduced from 106/ml to an undetectable level when the sterilization temperature of the chip was higher than 100 °C. The chip holds promising potential in developing portable microsystem for biological/clinical applications.  相似文献   

12.
This research reports an improved conjugation process for immobilization of antibodies on carboxyl ended self-assembled monolayers (SAMs). The kinetics of antibody/SAM binding in microfluidic heterogeneous immunoassays has been studied through numerical simulation and experiments. Through numerical simulations, the mass transport of reacting species, namely, antibodies and crosslinking reagent, is related to the available surface concentration of carboxyl ended SAMs in a microchannel. In the bulk flow, the mass transport equation (diffusion and convection) is coupled to the surface reaction between the antibodies and SAM. The model developed is employed to study the effect of the flow rate, conjugating reagents concentration, and height of the microchannel. Dimensionless groups, such as the Damköhler number, are used to compare the reaction and fluidic phenomena present and justify the kinetic trends observed. Based on the model predictions, the conventional conjugation protocol is modified to increase the yield of conjugation reaction. A quartz crystal microbalance device is implemented to examine the resulting surface density of antibodies. As a result, an increase in surface density from 321 ng/cm2, in the conventional protocol, to 617 ng/cm2 in the modified protocol is observed, which is quite promising for (bio-) sensing applications.Microfluidics have been implemented in various bio-medical diagnostic applications, such as immunosensors and molecular diagnostic devices.1 In the last decade, a vast number of biochemical species has been detected by microfluidic-based immunosensors. Immunosensors are sensitive transducers which translate the antibody-antigen reaction to physical signals. The detection in an immunosensor is performed through immobilization of an antibody that is specific to the analyte of interest.2 The antibody is often bound to the transducing surface of the sensor covered by self-assembled monolayers (SAMs). SAMs are organic materials that form a thin, packed and robust interface on the surface of noble metals like that of gold, suitable for biosensing applications.3 Thiolic SAMs have a “head” group that shows a high affinity to being chemisorbed onto a substrate, typically gold. The SAMs'' carboxylic functional group of the “tail” end can be linked to an amine terminal of an antibody to form a SAM/antibody conjugation.3,4 The conjugation process is usually accomplished in the presence of carbodiimides, such as 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). A yield increasing additive, N-Hydroxysuccinimide (NHS), is often used to enhance the surface loading density of the antibody.4,5A typical reaction for coupling the carboxylic acid groups of SAMs with the amine residue of antibodies in the presence of EDC/NHS is depicted in Figure Figure11.4 NHS promotes the generation of an active NHS ester (k2 reaction path). The NHS ester is capable of efficient acylation of amines, including antibodies (k3 reaction path). As a result, the amide bond formation reaction, which typically does not progress efficiently, can be enhanced using NHS as a catalyst.4Open in a separate windowFIG. 1.NHS catalyzed conjugation of antibodies to carboxylic-acid ended SAMs through EDC mediation (Adapted from G. T. Hermanson, Bioconjugate Techniques, 2nd. Edition. Copyright 2008 by Elsevier4). EDC reacts with the carboxylic acid and forms o-acylisourea, a highly reactive chemical that reacts with NHS and forms an NHS ester, which quickly reacts with an amine (i.e., antibody) to form an amide.A number of groups have studied EDC/NHS mediated conjugation reactions such as the ones depicted in Figure Figure1.1. The general stoichiometry of the reaction involves a carboxylic acid (SAM), an amine (antibody), and EDC to produce the final amide (antibody conjugated SAM) and urea. However, the recommended concentration ratio of the crosslinking reagents inside the buffer, i.e., the ratio of EDC and NHS with respect to adsorbates and each other, varies from one study to another.6 The kinetics of the reactions outlined in Figure Figure11 have also been investigated,4,6–8 but only in the absence of NHS for EDC or carboxylic acids in aqueous solutions.8 A relatively recent experimental study verified the catalytic role of the yield-increasing reagent N-hydroxybenzotriazole (HOBt), which acts similarly to NHS.7 In this study, the amide formation rate (k3 reaction path, Figure Figure1)1) was found to be dependent on the concentration of the carboxylic acid and EDC in the buffer solution, and independent of the amine and catalyst reagent concentration. The same group also showed that the amide bond formation kinetics is controlled by the reaction between the carboxylic acid and the EDC to give the O-acylisourea, which they marked as the rate-determining step (k1 reaction path, Figure Figure11).The k1 reaction path, or the conjugation reaction, is usually a lengthy process and takes between 1 and 3 h.4,9 Compared to k1, the k2 and ?k3 reactions are considerably faster. Microfluidics has the potential to enhance the kinetics of these reactions using the flow-through mode.10,11 This improvement occurs because while conventional methods rely only on diffusion as the primary reagent transport mode, microfluidics adds convection to better replenish the reagents to the reaction surfaces. However, there are many fundamental fluidic and geometrical parameters that might affect the process time and reagents consumption in a microfluidics environment, such as concentration of antibodies and reagents, flow rate, channel height, and final surface density of antibodies. A model that studies the kinetics of conjugation reaction against all these parameters would therefore be helpful for the optimization of this enhanced kinetics.There are a number of reports on numerical examination of the kinetics of binding reactions in microfluidic immunoassays.12–15 All these models developed so far couple the transport of reagents, by diffusion and convection, to the binding on the reaction surface. Myszka''s model assumes a spatially homogeneous constant concentration of reagents throughout the reaction chamber, thus fails to describe highly transport-limited conditions due to the presence of spatial heterogeneity and depletion of the bulk fluid from reagents.16,17 In transport-limited conditions, the strength of reaction is superior to the rate of transport of reagents to the reaction surface.18,19 More recently, the convection effects were included in a number of studies, describing the whole kinetic spectrum from reaction-limited conditions to transport-limited reactions.20–22 Immunoreaction kinetics has also been examined with a variety of fluid driving forces, from capillary-driven flows,20 to electrokinetic flows in micro-reaction patches,21 pressure-driven flows in a variety of geometric designs.22 Despite these comprehensive numerical investigations, the fundamental interrelations between the constitutive kinetic parameters, such as concentration, flow velocity, microchannel height, and antibody loading density, have not been studied in detail. In addition, the conjugation kinetics has not yet been exclusively examined.In this paper, a previous model for immunoreaction is modified to study the antibody/SAM conjugation reaction in a microfluidic system. Model findings are used to examine the process times recommended in the literature and possible modification scenarios are proposed. The new model connects the convective and diffusive transport of reagents in the bulk fluid to their surface reaction. The conjugation reaction is studied against fluidic and geometrical parameters such as flow rate, concentration, microchannel height and surface density of antibodies. Damköhler number is used to compare the reaction and fluidic phenomena present and justify the kinetic trends observed. Model predictions are discussed and the main finding on possible overexposure of carboxylates to crosslinking reagents, in conventional protocols, is verified by comparing the resultant antibody loading densities obtained using a quartz crystal microbalance (QCM) set up. The results demonstrate an improved receptor (antibody) loading density which is quite promising for a number of (bio-) sensing applications.23,24 Major application areas include antibody-based sensors for on-site, rapid, and sensitive analysis of pathogens such as Bacillus anthracis,23 Escherichia coli, and Listeria monocytogenes, and toxins such as fungal pathogens, viruses, mycotoxins, marine toxins, and parasites.24  相似文献   

13.
A microfluidic device was successfully fabricated for the rapid serodiagnosis of amebiasis. A micro bead-based immunoassay was fabricated within integrated microfluidic chip to detect the antibody to Entamoeba histolytica in serum samples. In this assay, a recombinant fragment of C terminus of intermediate subunit of galactose and N-acetyl-D-galactosamine-inhibitable lectin of Entamoeba histolytica (C-Igl, aa 603-1088) has been utilized instead of the crude antigen. This device was validated with serum samples from patients with amebiasis and showed great sensitivity. The serodiagnosis can be completed within 20 min with 2 μl sample consumption. The device can be applied for the rapid and cheap diagnosis of other infectious disease, especially for the developing countries with very limited medical facilities.Entamoeba histolytica is the causative agent of amebiasis and is globally considered a leading parasitic cause of human mortality.1 It has been estimated that 50 × 106 people develop invasive disease such as amebic dysentery and amebic liver abscess, resulting in 100 000 deaths per annum.2, 3 High sensitive diagnosis method for early stage amebiasis is quite critical to prevent and cure this disease. To date, various serological tests have been used for the immune diagnosis of amebiasis, such as the indirect fluorescent antibody test (IFA) and enzyme-linked immunosorbent assay (ELISA).We have recently identified a 150-kDa surface antigen of E. histolytica as an intermediate subunit (Igl) of galactose and N-acetyl-D-galactosamine-inhibitable lectin.4, 5 In particular, it has been shown that the C-terminus of Igl (C-Igl, aa 603-1088) was an especially useful antigen for the serodiagnosis of amebiasis. ELISA using C-Igl is more specific than the traditional ELISA using crude antigen.6 However, the ELISA process usually takes several hours, which is still labor-intensive and requires experienced operators to perform. More economic and convenient filed diagnosis methods are still in need, especially for the developing countries with limited medical facilities.Among all the bioanalytical techniques, microfluidics has been attracting more and more attention because of its low reagent/power consumption, the rapid analysis speed as well as easy automation.7, 8, 9, 10, 11 Especially with the development of the fabrication technique, microfluidics chip can include valves, mixers, pumps, heating devices, and even micro sensors, so many traditional bioanalytical methods can be performed in the microfluidics. Qualitative and quantitative immune analysis on the microfluidic chip was successfully proved by plenty of research with improved sensitivity, shorten reaction time, and less sample consumption.8, 10, 11, 12, 13, 14, 15, 16, 17 Moreover, with the intervention of other physical, chemical, biology, and electronic technology, microfluidic technique has been successfully utilized in protein crystallization, protein and gene analysis, cell capture and culturing and analysis as well as in the rapid and quantitative detection of microbes.13, 14, 15, 16, 17, 18, 19, 20Herein, we report a new integrated microfluidic device, which is capable of rapid serodiagnosis of amebiasis with little sample consumption. The microfluidic device was fabricated from polydimethysiloxane (PDMS) following standard soft lithography.21, 22 The device was composed of two layers (shown in Figure Figure1)1) including upper fluidic layer (in green and blue) and bottom control layer (in red).Open in a separate windowFigure 1Structure illustration of microfluidic chip.To create the fluidic layer and the control layer, two different molds with different patterns have fabricated by photolithographic processes. The mold to create the fluidic channels was made by positive photoresist (AZ-50 XT), while the control pneumatic mold was made by negative photoresist (SU8 2025). For the chip fabrication, the fluidic layer is made from PDMS (RTV 615 A: B in ratio 5:1), and the pattern was transferred from the respective mold. The control layer is made from PDMS (RTV 615 A:B in ratio 20:1). The two layers were assembled and bonded together accurately, and there is elastic PDMS membrane about 30 μm thick between the fluidic layer channels and control layer.21, 22 The elastic membrane at the intersection can deform to block the fluid inside the fluidic channels, functioning as valves under the pressures introduced though control channels. There are two types of channels in fluidic layer, the rectangular profiled (in green, 200 μm wide, 35 μm thick) channel and round profiled channels (in blue, 200 μm wide, 25 μm center height). Because of the position of the valves on the fluidic channels, two types of valves (Figure (Figure2a)2a) were built, working as a standard valve and a sieve valve. The standard valves (on blue fluidic channels) can totally block the fluid because of the round profile of fluidic channel; the sieve valve can only half close because of the rectangular profile. The sieve valve can be used to trap the microspheres (beads) filled inside the green fluidic channels, while letting the fluid pass through. By this sieve valve, a micro column (in green) is constructed, where the entire ELISA reaction happens. The micrograph of the fabricated micro device is shown in Figure Figure2b.2b. The channels were filled with food dyes in different colors to show the relative positions of the channels. The pressures though different control channels are individually controlled by solenoid valves, connected to a computer through relay board. By programming the status (on/off) of various valves at different time periods, all the microfluidic chip operation can be digitally controlled by the computer in manual, semi-automatic, or automatic manner.Open in a separate windowFigure 2(a) Structure illustration of micro column, standard valve and sieve valve; (b) photograph of the microfluidic chip.To validate this device, 12 patient serum samples were collected. Sera from 9 patients (Nos. 1–9) with an amebic liver abscess or amebic colitis were used as symptomatic cases. The diagnosis of these patients was based on their clinical symptoms, ultrasound examination (liver abscess) and endoscopic or microscopic examination (colitis). We also identified the clinical samples using PCR amplification of rRNA genes.24 As negative control, sera obtained from 3 healthy individuals with no known history of amebiasis were mixed into pool sera. The serum was positive for E. histolytica with a titer of 1:64 (borderline positive), as determined by an indirect fluorescent-antibody (IFA) test.23, 24 In our previously study, the sensitivity and specificity of the recombinant C-Igl in the ELISA were 97% and 99%.6, 25 In the current study, the serodiagnosis of amebiasis was also examined by ELISA using C-Igl.26 The cut-off for a positive result was defined as an ELISA value > 3 SD above the mean for healthy negative controls27 (shown in Figure Figure3).3). The seropositivity to C-Igl was 100% in patients with amebiasis.Open in a separate windowFigure 3ELISA reactivity of sera from patients against C-Igl. ELISA plate was coated with 100 ng per well of C-Igl. Serum samples from patients and healthy controls were used at 1:400 dilutions. The dashed line indicates the cut-off value. Data are representative of results from three independent experiments.In the diagnosis process with microfluidic chip, the 4 micro immuno-columns filled with C-Igl-coated microspheres were the key components of the device. The C-Igl was prepared in E. coli as inclusion bodies. After expression, the recombinant protein was purified and analyzed by SDS-PAGE. The apparent molecular mass was 85 kDa.26The immune-reaction mechanism is illustrated in Figure Figure4.4. The anti-His monocolonal antibody was immobilized onto the microspheres (beads, 9 μm diameter) coated with protein A. The C-Igl was then immobilized onto the beads through the binding between the His tag and C-Igl. For the diagnosis, the microspheres immobilized with C-Igl and blocked by 5% BSA were preloaded into the columns for the rapid analysis of the patient serum samples. Generally, serum samples which were diluted 100 times were first loaded into the reaction column and incubated at room temperature for 5 min. After being washed by PBS buffer, FITC-conjugated goat anti-human polyclonal antibody was added into the column for 4 min incubation. The fluorescence image can be collected by the fluorescence microscope after the micro column was washed with PBS buffer. From loading diluted serum samples into column to collecting fluorescence images, the total time to complete the immunoassay is less than 10 min. The final fluorescence results were analyzed by Image Pro Plus 6.0.Open in a separate windowFigure 4Schematic representation of the ELISA in the chip.Different reaction conditions have been investigated to find the optimized ones. For each patient, 2 μl sample is enough for the analysis. The designed microfluidic chip with 4 micro columns is capable for 4 parallel analyses at the same time. More micro columns can be integrated into the device if more parallel tests are needed.Different incubating time for the diagnosis has also been investigated and no significant difference has been found for various time periods. It is enough to incubate the chip for only 5 min. The total diagnosis time for one sample is less than 10 min. The detection result appeared as the fluorescence intensity of the reaction column. As shown in Figure Figure5,5, the negative sample showed relatively low fluorescence intensity, because little FITC-conjugated goat anti-human polyclonal antibody could attach to the surface of microspheres; on the contrast, the positive sample showed much brighter fluorescence. The fluorescence intensity can be transferred to digital data (Table
SampleAverage scoresStandard deviation
133 790368
223 269271
339 598307
4778452
521 222197
638 878290
722 437227
836 295334
941 024396
Negative20032
Open in a separate windowOpen in a separate windowFigure 5ELISA on the chip. The signals were collected by CCD of microscope. A: negative sample; B and C: positive samples.For the heterogeneous immunoreactions, the immobilization of the immune molecules is essential for the reaction efficiency. Herein, we utilized micro columns filled with pre-modified microspheres (beads) instead of the direct surface modification for the ELISA analysis. Compared with the traditional method, diagnosis using the microfluidic device took less than 10 min with only 2 μl sample consumption and little reagent consumption. The high efficiency might be attributed to the high surface modification efficiency by using beads as well as the advantages from microfluidic device itself. The C-Igl modified microspheres can be easily prepared in 1 h and preloaded inside the micro device for convenient application. The device is made from standard soft lithography by PDMS and its throughput can be easily improved by adding more micro columns into the microfluidic device in an economic manner, which is perfect for the onsite rapid and cheap diagnosis of amebiasis. Similar methodologies can be developed for diagnosis of other infectious disease, especially for the developing countries with very limited medical facilities.  相似文献   

14.
Black silicon as a platform for bacterial detection     
Jennifer S. Hartley  M. Myintzu Hlaing  Gediminas Seniutinas  Saulius Juodkazis  Paul R. Stoddart 《Biomicrofluidics》2015,9(6)
Surface-enhanced Raman scattering (SERS) shows promise for identifying single bacteria, but the short range nature of the effect makes it most sensitive to the cell membrane, which provides limited information for species-level identification. Here, we show that a substrate based on black silicon can be used to impale bacteria on nanoscale SERS-active spikes, thereby producing spectra that convey information about the internal composition of the bacterial capsule. This approach holds great potential for the development of microfluidic devices for the removal and identification of single bacteria in important clinical diagnostics and environmental monitoring applications.Plasma etching of silicon can be used to produce inexpensive, large surface area, nano-textured surfaces known as black silicon. Recently, it has been shown that black silicon nano-needles can impale bacteria1 and that it can be used as a sensor in microfluidic devices.2 When coated by a plasmonic metal, such as gold, the nano-textured surface of black silicon is ideal for use as a surface-enhanced Raman scattering (SERS) sensing platform.3 This work aims to investigate whether gold-coated black silicon nano-needles can be used to both impale bacteria and identify them by SERS. This combination of properties would promote the development of microfluidic devices for the removal and monitoring of bacteria in a wide range of medical, environmental, and industrial applications.4Black silicon was fabricated by a reactive ion etching technique,5 resulting in pyramidal-shaped spikes of height 185 ± 30 nm, full width at half height of 54 ± 10 nm, and 10 ± 2.4 nm radius of curvature at the tip. Samples were then magnetron sputter coated with 200 nm of gold, as this coating thickness was found to provide a suitable compromise between SERS enhancement and impalement efficiency. E. coli (ATCC 25922) from −80 °C stock was isolated on a nutrient agar plate (Difco nutrient broth, Becton Dickinson) for approximately 12 h. A single E. coli colony was then inoculated from the plate into 20 ml of nutrient broth media and incubated overnight at 37 °C with orbital shaking at 200 rpm. The total biomass of overnight culture was adjusted to an optical density of 0.3 at λ = 600 nm by adding fresh sterile nutrient broth (Cary 50 spectrophotometer, Agilent). The E. coli planktonic cells were washed three times by centrifugation at 12 000 rpm (Centrifuge 5804 R, Eppendorf) for 2 min. The washed cells were then re-suspended in a low strength minimum medium (Dulbecco A, phosphate buffered saline). A volume of 100 μl of solution was pipetted onto substrates and left to incubate for 1 h on the bench. Separate sets of samples were created for scanning electron microscope (SEM) imaging, live/dead staining, and SERS. Three sets were needed as each of these measurements altered the samples and left them unsuitable for further analysis.The first set of samples was washed three times with milliQ water after incubation, allowed to dry and then immediately sputter coated with gold using the Emitech K975x (operating current 35 mA, sputter time 32 s, stage rotation 138 rpm, and vacuum of 1 × 10−2 mbar). SEM imaging was performed with a Zeiss Supra 40VP in high vacuum mode with a working distance of 5 mm and an accelerating voltage of 3 kV. Figure Figure11 shows an example of the different levels of impalement that occurred on the black silicon surface. All cells showed signs of damage, but in some cases, the damage was limited to the perimeter of the cell and the main body appeared whole. In other cases, the entire cell had collapsed onto the spikes.Open in a separate windowFIG. 1.A typical SEM image showing E. coli cells with different levels of impalement on gold-coated black silicon.The second set of samples was used for live/dead staining (Invitrogen BacLight Bacterial Viability Kit L7012) with 3.34 mM SYTO 9 (green fluorescence) and 20 mM propidium iodide (red fluorescence). Equal volumes of both dyes were mixed thoroughly in a tube and added to the sample in a ratio of 3 μl of mixed dye to 1 ml of bacterial suspension. After mixing, a volume of 100 μl of the solution was pipetted onto the substrates, which were then incubated at room temperature in the dark for 15 min, before the staining solution was removed by pipetting. The substrates were then washed three times with milliQ water and mounted on a microscope slide for fluorescence imaging. The substrates were not allowed to dry and were stored in phosphate buffered saline at 4 °C when not in use. An epifluorescence microscope (Olympus IX71) with a mercury lamp source and a 60× water immersion objective was used to collect live/dead images from the substrates. Two filter blocks were used to collect the images: U-MNIBA2 blue excitation narrow band delivered green emission (live) and U-MWIG2 green excitation wide band provided red emission (dead).The live/dead image in Figure Figure22 shows a mix of both live and dead cells on the black silicon sample. The prevalence of live cells could be due to the incomplete impalement seen under SEM for some cells. It can also be explained by the sample still being wet during live/dead staining. The cells are dried prior to imaging in the SEM and this could weaken the cell wall and allow capillary forces to draw the cells onto the spikes for impalement. This hypothesis is supported by the large number of cells on the stained sample and the presence of cell groupings and cells imaged during mid-division. If the cells were immediately impaled, then such activity would not have been visible and a greater proportion of red cells would be expected.Open in a separate windowFIG. 2.Epifluorescence image showing live (green) and dead (red) E. coli cells after incubation on gold-coated black silicon.The third set of samples was washed three times with milliQ water after incubation and allowed to dry prior to spectral analysis. SERS spectra were collected with a Renishaw inVia Raman spectrometer operating at 785 nm with a 1200 l/mm grating. Power at the sample was 150 mW focused with a 100 × /0.85 NA objective to obtain a diffraction limited laser spot. The resulting spot size (≤2 μm in diameter) is well matched to the size of the bacterial cells. Spectra were collected with three accumulations of 10 s. Data were background subtracted6 and normalised to unity for ease of plotting. A great deal of variability was observed in the resulting spectra, as shown in Figure Figure33.Open in a separate windowFIG. 3.SERS spectra of E. coli after incubation on a gold-coated black silicon substrate. The spectrum numbers represent single cells at different locations and different levels of impalement.It should be noted that E. coli SERS is known to produce a high level of variability,7–12 depending on the experimental setup.13 However, the variability seen in the SERS spectra of Fig. Fig.33 is unusual for measurements performed under consistent experimental conditions. This increased level of variability may be related to the different levels of impalement seen in Fig. Fig.1,1, which results in the probing of different internal components. SERS is a surface sensitive technique, with the signal primarily arising within 2 nm of the metal surface.14 Note that unlike apertureless nanoprobes15 or conical plasmonic nanotips,16 the SERS signal in black silicon arises primarily from “hot spots” between the spikes, where the plasmon resonance field is particularly strong.17 Therefore, depending on the depth and location of impalement, different biomolecules are expected to be excited by this novel substrate.Some peaks occur in the same position for multiple spectra (e.g., peak positions 420, 893, 1001, 1285, and 1307 cm−1), but there are also a lot of unique peaks. The vertical lines in Fig. Fig.33 indicate peaks which have appeared in the literature for SERS of E. coli.7–12 Spectrum 3 has a high proportion of peaks matching published values. This is also the case for spectrum 5, which shares a few peak positions with spectrum 3. Preliminary peak allocations have identified carbohydrates11 (420 cm−1), tyrosine11 (650 cm−1), adenine10,11 (706 and 735 cm−1), hypoxanthine7 (722 and1373 cm−1), phenylalanine9 (1001 cm−1), amide III (Ref. 10) (1285 cm−1), CH2 deformation12 (1556 cm−1), and C=C10 (1587 cm−1).Given the varying levels of impalement observed in the SEM, it appears that the spike shape and Au coating should be further optimized to ensure that the entire cell is consistently pierced and the internal biomolecules are more comprehensively probed. In this way, it may be possible to obtain a more reproducible SERS spectrum of the internal biomolecular constituents of single bacterial cells, thereby providing rapid identification for medical and environmental diagnostic applications. Given that SERS is insensitive to water,4 future work should aim to achieve impalement in an aqueous environment, so that the full capability of microfluidics can be used to separate and concentrate suspended bacteria before presenting them to the substrate for rapid analysis.4 This suggests a broad range of potential applications in the detection, monitoring, and control of bacterial contamination.  相似文献   

15.
Policy change to improve pathology turnaround time and reduce costs – possible to do both?     
Goce Dimeski  Breeann Silvester  Jacobus Ungerer  Leslie Johnson  Jennifer H. Martin 《Biochemia medica : ?asopis Hrvatskoga dru?tva medicinskih biokemi?ara / HDMB》2013,23(3):296-302

Background:

Overcrowding and prolonged length of stay in emergency departments (ED) are increasing problems in hospitals. Rapid availability of all laboratory results has an impact on clinical decision-making, admissions or discharge decisions and resource utilisation. Increasing number of our urinary drugs of abuse (DOA) screens had a turnaround time (TAT) of up to 33 days after the discharge of the patient.

Materials and methods:

Following an audit and a consultation period with clinicians using the service, a policy change was implemented to reduce the use of gas chromatography mass spectroscopy (GCMS): all requests would have a standard immunoassay (IA) test panel undertaken unless specifically they requested GCMS (including medico-legal) analysis.

Results:

Almost all of the clinicians interviewed had no understanding of the DOA screening or the difference in the information generated between a confirmatory GCMS urine toxicology screen and IA DOA panel. It appeared none of the patients surveyed in the audit would have had a different clinical decision made if a GCMS had not been undertaken. Post change audit showed only 4.3% of drug requests for IA also received a confirmatory GCMS testing. The estimated saving post change implementation was $127,000 (AU $) in test costs alone over a two year period. The TAT of GCMS results was reduced to 3–4 days.

Conclusion:

A laboratory-led behavioural change in test requesting is possible and sustainable provided the reason is clinically sound and accompanied by consultation and availability of advice by phone when requested on test requesting or interpretation.  相似文献   

16.
Development of vertical SU-8 microneedles for transdermal drug delivery by double drawing lithography technology     
Zhuolin Xiang  Hao Wang  Aakanksha Pant  Giorgia Pastorin  Chengkuo Lee 《Biomicrofluidics》2013,7(6)
Polymer-based microneedles have drawn much attention in transdermal drug delivery resulting from their flexibility and biocompatibility. Traditional fabrication approaches are usually time-consuming and expensive. In this study, we developed a new double drawing lithography technology to make biocompatible SU-8 microneedles for transdermal drug delivery applications. These microneedles are strong enough to stand force from both vertical direction and planar direction during penetration. They can be used to penetrate into the skin easily and deliver drugs to the tissues under it. By controlling the delivery speed lower than 2 μl/min per single microneedle, the delivery rate can be as high as 71%.Microelectromechanical systems (MEMS) technology has enabled wide range of biomedical devices applications, such as micropatterning of substrates and cells,1 microfluidics,2 molecular biology on chips,3 cells on chips,4 tissue microengineering,5 and implantable microdevices.6 Transdermal drug delivery using MEMS based devices can delivery insoluble, unstable, or unavailable therapeutic compounds to reduce the amount of those compounds used and to localize the delivery of potent compounds.7 Microneedles for transdermal drug delivery are increasingly becoming popular due to their minimally invasive procedure,8 promising chance for self-administration,9 and low injury risks.10 Moreover, since pharmaceutical and therapeutic agents can be easily transported into the body through the skin by microneedles,11, 12 the microneedles are promising to replace traditional hypodermic needles in the future. Previously, various microneedles devices for transdermal drug delivery applications have been reported. They have been successfully fabricated by different materials, including silicon,13 stainless steel,14 titanium,15 tantalum,16 and nickel.17 Although microneedles with these kinds of materials can be easily fabricated into sharp shape and offer the required mechanical strength for penetration purpose, such microneedles are prone to be damaged18 and may not be biocompatible.19 As a result, polymer based microneedles, such as SU-8,20, 21 polymethyl meth-acrylate (PMMA),22, 23 polycarbonates (PCs),24, 25 maltose,26, 27 and polylactic acid (PLA),28, 29 have caught more and more attentions in the past few years. However, in order to obtain ultra-sharp tips for penetrating the barrier layer of stratum corneum,30 conventional fabrication technologies, for instances, PDMS (Polydimethylsiloxane) molding technology,31, 32 stainless steel molding technology,33 reactive ion etching technology,34 inclined UV (Ultraviolet) exposure technology,35 and backside exposure with integrated lens technology36 are time-consuming and expensive. In this paper, we report an innovative double drawing lithography technology for scalable, reproducible, and inexpensive microneedle devices. Drawing lithography technology37 was first developed by Lee et al. They leveraged the polymers'' different viscosities under different temperatures to pattern 3D structures. However, it required that the drawing frames need to be regular cylinders, which is not proper for our devices. To solve the problem, the new double drawing lithography is developed to create sharp SU-8 tips on the top of four SU-8 pillars for penetration purpose. Drugs can flow through the sidewall gaps between the pillars and enter into the tissues under the skin surface. The experiment results indicate that the new device can have larger than 1N planar buckling force and be easily penetrated into skin for drugs delivery purpose. By delivering glucose solution inside the hydrogel, the delivering rate of the microneedles can be as high as 71% when the single microneedle delivery speed is lower than 2 μl/min.An array of 3 × 3 SU-8 supporting structures was patterned on a 140 μm thick, 6 mm × 6 mm SU-8 membrane (Fig. (Fig.1a).1a). Each SU-8 supporting structure included four SU-8 pillars and was 350 μm high. The four pillars were patterned into a tubelike shape on the membrane (Fig. (Fig.1b).1b). The inner diameter of the tube was 150 μm, while the outer diameter was 300 μm. SU-8 needles of 700 μm height were created on the top of SU-8 supporting structures to ensure the ability of transdermal penetration. Two PDMS layers were bonded with SU-8 membrane to form a sealed chamber for storing drugs from the connection tube. Once the microneedles entered into the tissue, drugs could be delivered into the body through the sidewall gaps between the pillars (Fig. (Fig.1c1c).Open in a separate windowFigure 1Schematic illustration of the SU-8 microneedles. (a) Overview of the whole device; (b) SU-8 supporting structures made of 4 SU-8 pillars; and (c) enlarged view of a single SU-8 microneedle.The fabrication process of SU-8 microneedles is shown in Fig. Fig.2.2. SU-8 microneedles fabrication started from a layer of Polyethylene Terephthalate (PET, 3M, USA) film pasted on the Si substrate by sticking the edge area with kapton tape (Fig. (Fig.2a).2a). The PET film, a kind of transparent film with poor adhesion to SU-8, was used as a sacrificial layer to dry release the final device from Si substrate. A 140 μm thick SU-8 layer was deposited on the top of this PET film. To ensure a uniform surface of this thick SU-8 layer, the SU-8 deposition was conducted in two steps coating. After exposed under 450 mJ/cm2 UV, the membrane pattern could be defined (Fig. (Fig.2b).2b). In order to ensure an even surface for following spinning process, another 350 μm SU-8 layer was directly deposited on this layer in two steps without development. With careful alignment, an exposure of 650 mJ/cm2 UV energy was performed on this 350 μm SU-8 layer to define the SU-8 supporting structures (Fig. (Fig.2c).2c). The SU-8 structure could be easily released from the PET substrate by removing the kapton tape and slightly bending the PET film. Two PDMS layers were bonded with this SU-8 structure by a method reported by Zhang et al.38 (Fig. (Fig.2d2d).Open in a separate windowFigure 2Fabrication process for SU-8 microtubes. (a) Attaching a PET film on the Si substrate; (b) exposing the first layer of SU-8 membrane without development; (c) depositing and patterning two continuous SU-8 layers as sidewall pillars; (d) releasing the SU-8 structure from the substrate and bonding it with PDMS; (e) drawing hollowed microneedles on the top of supporting structures; (f) baking and melting the hollowed microneedles to allow the SU-8 flow in the gaps between pillars; and (g) drawing second time on the top of the melted SU-8 flat surface to get microneedles.In our previous work,39 we used one time stepwise controlled drawing lithography technology for the sharp tips integration. However, since the frame used to conduct drawing process in present study is a four-pillars structure rather than a microtube, the conventional drawing process can only make a hollowed tip but not a solid tip structure (Fig. (Fig.3).3). This kind of tip was fragile and could not penetrate skin in the practical testing process. To solve the problem, we developed an innovative double drawing lithography process. After bonding released SU-8 structure with PDMS layers (Fig. (Fig.2d),2d), we used it to conduct first time stepwise controlled drawing lithography37 and got hollowed tips (Fig. (Fig.2e).2e). Briefly, the SU-8 was spun on the Si substrate and kept at 95 °C until the water inside completely vaporized. Device of SU-8 supporting structures was fixed on a precision stage. Then, the SU-8 supporting structures were immersed into the SU-8 by adjusting the precision state. The SU-8 were coated on the pillars'' surface. Then, the SU-8 supporting structures were drawn away from the interface of the liquid maltose and air. After that, the temperature and drawing speed were increased. Since the SU-8 was less viscous at higher temperature, the connection between the SU-8 supporting structures and surface of the liquid SU-8 became individual SU-8 bridge, shrank, and then broke. The end of the shrunk SU-8 bridge forms a sharp tip on the top of each SU-8 supporting structure when the connection was separated. After the hollowed tips were formed in the first step drawing process, the whole device was baked on the hotplate to melt the hollowed SU-8 tips. Melted SU-8 reflowed into the gaps between four pillars and the tips became domes (Fig. (Fig.2f).2f). Then, a second drawing process was conducted on the top of melted SU-8 to form sharp and solid tips (Fig. (Fig.2g).2g). The final fabricated device is shown in Fig. Fig.44.Open in a separate windowFigure 3A hollowed SU-8 microneedle fabricated by single drawing lithography technology (scale bar is 100 μm).Open in a separate windowFigure 4Optical images for the finished SU-8 microneedles.During the double drawing process, as long as the heated time and temperature were controlled, the SU-8 flow-in speed of SU-8 inside the gaps could be precisely determined. The relationship between baking temperature and flow-in speed was studied. As shown in Fig. Fig.5,5, the flow-in speed is positive related to the baking temperature. The explanation for this phenomena is that the SU-8''s viscosity is different under different baking temperatures.40 Generally, baked SU-8 has 3 status when temperature increases, solid, glass, and liquid. The corresponding viscosity will decrease and the SU-8 can also have higher fluidity. When the baking temperature is larger than 120 °C, the flow-in speed will increase sharply. But, if the baking temperature is higher, the SU-8 will reflow in the gaps too fast, which makes the flow-in depth hard to be controlled. There is a high chance that the whole gaps will be blocked, and no drugs can flow through these gaps any more. Considering that the total SU-8 supporting structure is only 350 μm high, we choose 125 °C as baking temperature for proper SU-8 flow-in speed and easier SU-8 flow-in depth control.Open in a separate windowFigure 5The relationship between flow-in speed and baking temperature.To ensure the adequate stiffness of the SU-8 microneedles in vertical direction, Instron Microtester 5848 (Instron, USA) was deployed to press the microneedles with the similar method reported by Khoo et al.41 As shown in Fig. Fig.6a,6a, the vertical buckling force was as much as 8.1N, which was much larger than the reported minimal required penetration force.42 However, in the previous practical testing experiments, even though the microneedles were strong enough in vertical direction, the planar shear force induced by skin deformation might also break the interface between SU-8 pillars and top tips. In our new device with four pillars supporting structure, the SU-8 could flow inside the sidewall gaps between the pillars to form anchors. These anchors could enhance microneedles'' mechanical strength and overcome the planar shear force problems. Moreover, the anchors strength could be improved by controlling the SU-8 flow-in depth. Fig. Fig.77 shows that the flow-in depth increases when the baking time increases as the baking time increases at 125 °C. Fig. Fig.6b6b shows that the corresponding planar buckling force can be improved to be larger than 1 N by increasing flow-in depth. Some sidewall gaps at bottom are kept on purpose for drugs delivery; hence, the flow-in depth is chosen as 200 μm.Open in a separate windowFigure 6(a) Measurement of the vertical buckling force. (b) The planar buckling force varies under different flow-in depth (I, II, III, and IV corresponding to the certain images in Fig. Fig.77).Open in a separate windowFigure 7Different flow-in depth inside the gaps between SU-8 pillars. (a) 0 μm; (b) 100 μm; (c) 200 μm; and (d) 350 μm (scale bar is 100 μm).The penetration capability of the 3 × 3 SU-8 microneedles array is characterized by conducting the insertion experiment on the porcine cadaver skin. 10 microneedles devices were tested and all of them were strong enough to be inserted into the tissue without any breakage. Histology images of the skin at the site of one microneedle penetration were derived to prove that the sharp conical tip was not broken during the insertion process (Fig. (Fig.8).8). It also shows penetrated evidence because the hole shape is the same as the sharp conical tip.Open in a separate windowFigure 8Histology image of individual microneedle penetration (scale bar is 100 μm).In order to verify that the drug solution can be delivered into tissue from the sidewall gaps of the microneedles, FITC (Fluorescein isothiocyanate) (Sigma Aldrich, Singapore) solution was delivered through the SU-8 microneedles after they were penetrated into the mouse cadaver skin. The representative results were then investigated via a confocal microscope (Fig. (Fig.9).9). The permeation pattern of the solution along the microchannel created by microneedles confirmed the solution delivery results. The black area was a control area without any diffused florescent solution. In contrast, the illuminated area in Fig. Fig.99 indicates the area where the solution has diffused to it. These images were taken consecutively from the skin surface down to 180 μm with 30 μm intervals. The diffusion area had a similar dimension with the inserted microneedles. It has proved that the device can be used to deliver drugs into the body.Open in a separate windowFigure 9Images of confocal microscopy to show the florescent solution is successfully delivered into the tissue underneath the skin surface. (a) 30 μm; (b) 60 μm; (c) 90 μm; (d) 120 μm; (e) 150 μm; and (f) 180 μm (scale bar is 100 μm).Due to the uneven surface of deformed skin, there is always tiny gap happened between tips of some microneedles and local surface skin. The microneedles could not be entirely inserted into the tissue. Drugs might leak to the skin surface through the sidewall gaps under certain driven pressure. Hydrogel absorption experiment was conducted to quantify the delivery rate (i.e., the ratio of solution delivered into tissues in the total delivered volume) and to optimize the delivery speed. Using hydrogel as the tissue model for quantitative analysis of microneedle releasing process was reported by Tsioris et al.43 The details are shown here. Gelatin hydrogel was prepared by boiling 70 ml DI (Deionized) water and mixing it with 7 g of KnoxTM original unflavored gelatin powder. The solution was poured into petri dish to 1 cm high. Then, the petri dish was put into a fridge for half an hour. Gelatin solution became collagen slabs. The collagen slabs were cut into 6 mm × 6 mm sections. A piece of fully stretched parafilm (Parafilm M, USA) was tightly mounted on the surface of the collagen slabs. This parafilm was used here to block the leaked solution further diffusing into the collagen slab in the delivery process. Then, the microneedles penetrated the parafilm and went into the collagen slab. Controlled by a syringe pump, 0.1 ml–0.5 mg/ml glucose solution was delivered into the collagen slab under different speeds. Methylene Blue (Sigma Aldrich, Singapore) was mixed into the solution for better inspection purpose (Fig. 10a). Then, the collagen slabs was digested in 1 mg/ml collagenase (Sigma Aldrich, Singapore) at room temperature (Fig. 10b). It took around 1 h that all the collagen slabs could be fully digested (Fig. 10d). The solution was collected to measure the glucose concentration with glucose detection kit (Abcam, Singapore). Briefly, both diluted glucose standard solution and the collected glucose solution were added into a series of wells in a well plate. Glucose assay buffer, glucose enzyme, and glucose substrate were mixed with these samples in the wells. After incubation for 30 min, their absorbance were examined by using a microplate reader at a wavelength of 450 nm. By comparing the readings with the measured concentration standard curve (Fig. 11a), the glucose concentration in the hydrogel, the glucose absorption rate in the hydrogel, and the solution delivery rate by microneedles could be measured and calculated. As shown in Fig. 11b, when the delivering speed of a single microneedle increased from 0.1 μl/min to 2 μl/min, the glucose absorption rate also increased. Most of the glucose solution from microneedles could go into the hydrogel. The delivered rate could be as high as 71%. The rest solution leaked from sidewall gaps and blocked by parafilm. However, when the delivered speed for a single microneedle was larger than 2 μl/min, the hydrogel absorption rate was saturated. More and more solution could not go into the hydrogel but leak from the sidewall gaps. Then, the delivered rate decreased. Therefore, 2 μl/min was chosen as the optimized delivery speed for the microneedle.Open in a separate windowFigure 10Glucose solution could be delivered into the hydrogel, and the collagen stabs were dissolved by collagenase.Open in a separate windowFigure 11(a) Standard curve for glucose detection; (b) glucose absorption rate and solution delivery rate in a single needle corresponding to different delivery speed.In conclusion, a drug delivery device of integrated vertical SU-8 microneedles array is fabricated based on a new double drawing lithography technology in this study. Compared with the previous biocompatible polymer-based microneedles fabrication technology, the proposed fabrication process is scalable, reproducible, and inexpensive. The fabricated microneedles are rather strong along both vertical and planar directions. It is proved that the microneedles were penetrated into the pig skin easily. The feasibility of drug delivery using SU-8 microneedles is confirmed by FITC fluorescent delivery experiment. In the hydrogel absorption experiment, by controlling the delivery speed under 2 μl/min per microneedle, the delivery rate provided the microneedle is as high as 71%. In the next step, the microneedles will be further integrated with microfluidics on a flexible substrate, forming a skin-patch like drug delivery device, which may potentially demonstrate a self-administration function. When patients need an injection treatment at home, they can easily use such a device just like using an adhesive bandage strip.  相似文献   

17.
Plasmonic hotspots of dynamically assembled nanoparticles in nanocapillaries: Towards a micro ribonucleic acid profiling platform     
Shoupeng Liu  Yu Yan  Yunshan Wang  Satyajyoti Senapati  Hsueh-Chia Chang 《Biomicrofluidics》2013,7(6)
Plasmonic hot spots, generated by controlled 20-nm Au nanoparticle (NP) assembly, are shown to suppress fluorescent quenching effects of metal NPs, such that hair-pin FRET (Fluorescence resonance energy transfer) probes can achieve label-free ultra-sensitive quantification. The micron-sized assembly is a result of intense induced NP dipoles by focused electric fields through conic nanocapillaries. The efficient NP aggregate antenna and the voltage-tunable NP spacing for optimizing hot spot intensity endow ultra-sensitivity and large dynamic range (fM to pM). The large shear forces during assembly allow high selectivity (2-mismatch discrimination) and rapid detection (15 min) for a DNA mimic of microRNA.Irregular expressions of a panel of microRNAs (miRNA) in blood and other physiological fluids may allow early diagnosis of many diseases, including cancer and cardiovascular diseases.1 However, quantifying all relevant miRNAs (out of 1000), with similar sequences over 22 bases2 and large variations in expression level (as much as 100 fold) at small copy numbers, requires a new molecular diagnostic platform with high-sensitivity, high-selectivity, and large dynamic range. Current techniques for miRNA profiling, such as Northern blotting,3 microarray-based hybridization,4 and real-time quantitative polymerase chain reaction5 are expensive and complex. A simple and rapid miRNA array would allow broad distribution of molecular diagnostic devices for cancer and chronic diseases, eventually into homes for frequent prescreening of many diseases.At their low concentrations in untreated samples, optical sensing of miRNA is most promising. Plasmonically excited Raman scattering (SERS) and fluorescence sensors from metallic nanoparticles (NPs) or surfaces have enhanced the sensitivity of optical molecular sensors by orders of magnitude.6, 7, 8, 9 However, probe-less SERS sensing or fluorescent sensing of unlabeled targets are insufficiently specific for miRNA targets in heterogeneous samples. Plasmonic detection is also very compatible with FRET probes whose donor dye offers small light sources to excite fluorescently labelled targets upon hybridization.7, 10A particular family of FRET reporters does offer label-free sensing: hairpin oligo probes whose end-tagged fluorophores are quenched by the Au NP to which they are functionalized.11 The fluorescent signal is only detected when the hairpin is broken by the hybridizing target nucleic acid or protein (for an aptamer probe), and the more rigid paired segment separates the end fluorophore from the quenching surface to produce a fluorescent signal. It is often hoped that plasmonics on the metal surface will enhance the intensity to overcome the quenching effect, if the linearized hairpin is within the NP plasmonic penetration length. However, since fluorescent quenching decays slowly (linearly) with fluorophore-metal spacing10 whereas the plasmonic intensity decays exponentially from a flat surface, careful experimentation shows that quenching dominates and the hairpin probe actually produces a larger intensity on non-metallic surfaces,10 on which it can not function as a label-free probe. Hence, only μM limit-of-detection (LOD) has been achieved with this technique on single NPs or on flat metal surfaces,12 with expensive laser excitation and confocal detection.Plamonic hot spots formed between metal nanostructures and sharp nanocones can further amplify the plasmonic field.13, 14 The hot spot intensity decays algebraically with respect to the separation or cone tip distance and hence should dominate the linear decay of the metal quenching effect at some optimum separation.15 It is hence possible that plasmonic hot spots may allow much lower LOD with inexpensive optical instruments—ideally light-emitting diode light source and miniature camera. However, the dimension of the gaps, cones, and wedges needs to be at nanoscale, and the cost is now transferred to fabrication of such hot-spot substrates like bow-ties, double crescents, bull-eyes, etc.16 Low-cost wet-etching techniques for addressable nanocones that sustain converging plasmonic hot spots17 have been reported but the fabricated nanocones are often too non-uniform to allow precise quantification. NP monolayers have been shown to exhibit plasmonic hot spots and fluorescence enhancement.18, 19 However, the enhancement only occurs within a range of spacing between aggregated NPs, which is difficult to control and the location or even the existence of the hotspots are not known a priori.Higher sensitivity is expected if a minimum number of NPs are used in an assembly at a known location and if the NP assembly can produce crystal-like aggregates with controllable NP spacing. Induced DC and AC NP dipoles (related to dielectrophoresis) have been used to assemble NP crystals by embedded micro-electrodes to provide the requisite high field.20, 21 The resulting NP crystals are ideal for plasmonic hot spots, since the spacing of the regimented NP crystal can be controlled by the applied voltage. Conic nanocapillaries22, 23 will be used here for such field-induced NP assembly because the submicron-tip can focus the electric field into sufficient high intensity for NP assembly without embedded-electrodes. Because the field is highest at the tip due to field focusing, the micron-sized crystal would be confined to a small volume, which will be shown to be less than typical confocal volumes, at a known location. So long as the hotspots are regimented, the quantification of target molecules is determined by the total fluorescent intensity and is hence insensitive to the exact geometry of the nanocapillary.Fluorescent microscope equipped with tungsten lamp light source and normal CCD camera from Q Imaging were used for simultaneous optical and ion current measurements, as shown in Fig. Fig.1a.1a. The nanocapillaries were pulled from commercial glass capillaries using laser-assisted capillary puller. SEM image of a typical pulled glass nanocapillary in Fig. Fig.1b1b shows an inner diameter of 111 nm and cone angle of 7.3°. The capillary was inserted into a Polydimethylsiloxane chip with two reservoirs. The 20 nm Au NPs, functionalized with fluorescently labelled dsDNA, were injected into the base reservoir. With SEM imaging (Fig. S3 in the supplementary material24), the functionalized DNA is found to prevent NP aggregation even in high ionic-strength Phosphate buffered saline buffer. The NP solution is then driven into the capillary through the tip by applying a positive voltage. Fig. Fig.1c1c shows the ion current evolution over 2 h at +1 V packing voltage. The ion current increases rapidly in the first 10 min, then at a much slower rate. The rise of current indicates assembly of conductive Au NP assembly at the tip. This was confirmed by the strong fluorescence signal at the tip region during the packing process (inset of Fig. Fig.1c).1c). The one-micron region (corresponding to roughly an aggregate volume of one attoliter) near the capillary tip shows a fluorescence signal after 1 min and also appeared as a dark spot in the transmission image (supplementary material, Fig. S124). This spot darkens with longer packing time but does not grow in size, consistent with the monotonically increasing ion current with increased packing density of the NP assembly. As contrast, a strong fluorescence appeared after only 1 min of packing, but the signal became weaker after 15 min (supplementary material, Fig. S124). This reduction in fluorescence is not due to bleaching of fluorophores because we took 2 images in 15 min at 5 s exposure each and control experiments show significant bleaching only beyond an exposure time of 100 s (see supplementary material).24 Instead, the non-monotonic dependence of the fluorescence intensity with respect to time is because of the optimal hotspot spacing for highest plasmonic intensity at about 5–20 nm,25, 26, 27 which is reached at about 10 min.Open in a separate windowFigure 1Plasmonic hotspots generated at the tip of a nano-capillary. (a) Schematic of the experimental set up. (b) SEM image of glass nanocapillary shows opening at the tip with a diameter of 111 nm. (c) Current evolution during packing of fluorescently labeled gold particles at +1 V. Inset shows strong fluorescence only after 1 min of packing.The FRET probe is designed to exploit the plasmonic hotspot.24 We first electrophoretically drove the target molecules in the tip side reservoir into the nano-capillary by applying a negative voltage of −1 V. During this process, the targets are trapped within the capillary and hybridize with the hairpin probes on the Au NP in the nanocapillary. Fluorescence of the unquenched hybridized probes is too weak to be detected by our detector as shown in Fig. Fig.2b.2b. A reverse positive voltage of +1 V was then applied to the capillary to pack the Au NPs to the tip. Due to plasmonic hot spots of aggregated gold nanoparticles, the fluorescence signal is significantly enhanced at the tip and can be detected by our CCD camera, as shown in Fig. Fig.2c2c.Open in a separate windowFigure 2(a) Schematics of designed hairpin probe on gold particle. (b) Before packing gold particles, probe fluorescence signal was too weak to be detect. (c) After packing for 3 minutes, a strong fluorescence signal appears at the NP aggregate. (d) Normalized intensity (average of all pixels above a threshold (15 au) normalized with respect to the average over all pixels (with 0-250 au)) as a function of packing voltage for different samples. Black, 1 nM target ; blue, 10 pM target; purple, 10 nM 2-mismatch non-target. (e) Intensity dependence on target concentration. Measured normalized intensity before packing (black) and after packing (red), for three independent experiments with different nano-capillaries at each concentration. NT stands for non-target at 10 nM as a reference.For the same packing time, the fluorescence intensity increases initially but saturates after 10 min time of trapping (supplementary material, Fig. S2(a)24). Over 10 min of trapping with a negative voltage, we found the fluorescence intensity exhibits a maximum at a packing time of 3 min (supplementary material, Fig. S2(b)24). In later experiments, we used 10 min trapping time and 3 min packing time as standards.Fig. Fig.2d2d shows the fluorescence intensity is sensitive to the positive packing voltage at different concentration of target and non-target molecules. For target samples (1 nM and 10pM), the optimal voltage is about 1 V. We suspect that with larger voltage, the NPs are packed too tightly such that the NP spacing is smaller than the optimal distance for plasmonic hotspots. The fluorescence intensity for a nontarget with two mismatches is 7 times lower than the target even with a 10 times higher concentration (10 nM). Moreover, the optimal voltage for the non-target miRNA is reduced to 0.5 V instead 1 V for the target miRNA. Strong shear during electrophoretic packing has probably endowed this high selectivity.20Using the protocol above, the LOD and dynamic range of the target was determined (Fig. (Fig.2e).2e). The intensity at each concentration is measured with three independent experiments with different nanocapillaries to verify insensitivity with respect to the nanocapillary. The intensity increases monotonically with respect to the concentration from 1fM to 1pM. Beyond 1pM, the fluorescence signal saturates, presumably because all hairpin probes at the tip have been hybridized. At 1 fM, the fluorescent intensity is still well above the background measured from the non-target sample. Note both auto-fluorescence of gold nanoparticles and free diffusing non-target DNA molecules contribute to the background. Given the volume of tip side reservoir (∼50 μl), there are about 30 000 target molecules in the reservoir at 1 fM. However, with a short 10 min trapping time, we estimate only a small fraction of these molecules, less than 100, have been transferred from the tip reservoir into the nanocapillary.  相似文献   

18.
Assessment of patient safety culture in clinical laboratories in the Spanish National Health System     
Angeles Giménez-Marín  Francisco Rivas-Ruiz  Ana M. García-Raja  Rafael Venta-Obaya  Margarita Fusté-Ventosa  Inmaculada Caballé-Martín  Alfonso Benítez-Estevez  Ana I. Quinteiro-García  José Luis Bedini  Antonio León-Justel  Montserrat Torra-Puig 《Biochemia medica : ?asopis Hrvatskoga dru?tva medicinskih biokemi?ara / HDMB》2015,25(3):363-376
  相似文献   

19.
Polyphosphonium‐based bipolar membranes for rectification of ionic currents     
Erik O. Gabrielsson  Magnus Berggren 《Biomicrofluidics》2013,7(6)
Bipolar membranes (BMs) have interesting applications within the field of bioelectronics, as they may be used to create non-linear ionic components (e.g., ion diodes and transistors), thereby extending the functionality of, otherwise linear, electrophoretic drug delivery devices. However, BM based diodes suffer from a number of limitations, such as narrow voltage operation range and/or high hysteresis. In this work, we circumvent these problems by using a novel polyphosphonium-based BM, which is shown to exhibit improved diode characteristics. We believe that this new type of BM diode will be useful for creating complex addressable ionic circuits for delivery of charged biomolecules.Combined electronic and ionic conduction makes organic electronic materials well suited for bioelectronics applications as a technological mean of translating electronic addressing signals into delivery of chemicals and ions.1 For complex regulation of functions in cells and tissues, a chemical circuit technology is necessary in order to generate complex and dynamic signal gradients with high spatiotemporal resolution. One approach to achieve a chemical circuit technology is to use bipolar membranes (BMs), which can be used to create the ionic equivalents of diodes2, 3, 4, 5 and transistors.6, 7, 8 A BM consists of a stack of a cation- and an anion-selective membrane, and functions similar to the semiconductor PN-junction, i.e., it offers ionic current rectification9, 10 (Figure (Figure1a).1a). The high fixed charge concentration in a BM configuration make them more suited in bioelectronic applications as compared to other non-linear ionic devices, such as diodes constructed from surface charged nanopores11 or nanochannels,12 as the latter devices typically suffers from reduced performance at elevated electrolyte concentration (i.e., at physiological conditions) due to reduced Debye screening length.13 However, a unique property of most BMs, as compared to the electronic PN-junction and other ionic diodes, is the electric field enhanced (EFE) water dissociation effect.10, 14 This occurs above a threshold reverse bias voltage, typically around −1 V, as the high electric field across the ion-depleted BM interface accelerates the forward reaction rate of the dissociation of water into H+ and OH ions. As these ions migrate out from the BM, there will be an increase in the reverse bias current. The EFE water dissociation is a very interesting effect and is commonly used in industrial electrodialysis applications,15 where highly efficient water dissociating BMs are being researched.16 Also, BMs have also been utilized to generate H+ and OH ions in lab-on-a-chip applications.2, 17 However, the EFE water dissociation effect diminishes the diode property of BMs when operated outside the ±1 V window, which is unwanted in, for instance, chemical circuits and addressing matrices for delivery of complex gradients of chemical species. The effect can be suppressed by incorporating a neutral electrolyte inside the BM,10, 18 for instance, poly(ethylene glycol) (PEG).2, 6, 7 However, as previously reported,2 the PEG volume will introduce hysteresis when switching from forward to reverse bias, due to its ability to store large amounts of charges. This was circumvented by ensuring that only H+ and OH are present in the diode, which recombines into water within the PEG volume. Such diodes are well suited as integrated components in chemical circuits for pH-regulation, due to the in situ formed H+ and OH, but are less attractive if, for instance, other ions, e.g., biomolecules, are to be processed or delivered in and from the circuit. Furthermore, a PEG electrolyte introduces additional patterning layers, making device downscaling more challenging. This is undesired when designing complex, miniaturized, and large-scale ionic circuits. Thus, there is an interest in BM diodes that intrinsically do not exhibit any EFE water dissociation, are easy to miniaturize, and that turn off at relatively high speeds. It has been suggested that tertiary amines in the BM interface are important for efficient EFE water dissociation,19, 20, 21 as they function as a weak base and can therefore catalyze dissociation of water by accepting a proton. For example, anion-selective membranes that have undergone complete methylation, converting all tertiary amines to quaternary amines, shows no EFE water dissociation,19 although this effect was not permanent, as the quaternization was reversed upon application of a current. Similar results were found for anion-selective membranes containing alkali-metal complexing crown ethers as fixed charges.21 Also, EFE water dissociation was not observed or reduced in BMs with poor ion selectivity, for example, in BMs with low fixed-charge concentration5 or with predominantly secondary and tertiary amines in the anion-selective membrane,22 as the increased co-ion transport reduces the electric field at the BM interface. However, due to decreased ion selectivity, these membranes show reduced rectification. In this work, we present a non-amine based BM diode that avoids EFE water dissociation, enables easy miniaturization, and provides fast turn-off speeds and high rectification.Open in a separate windowFigure 1(a) Ionic current rectification in a BM. In forward bias, mobile ions migrate towards the interface of the BM. The changing ion selectivity causes ion accumulation, resulting in high ion concentration and high conductivity. At high ion concentration, the selectivity of the membranes fails (Donnan exclusion failure), and ions start to pass the BM. In reverse bias, the mobile ions migrate away from the BM, eventually giving a zone with low ion concentration and low conductivity. Reverse bias can cause EFE water dissociation, producing H+ and OH- ions. (b) Chemical structures of PSS, qPVBC, and PVBPPh3. (c) The device used to characterize the BMs and the BM1A, BM2A, and BM1P designs. The BM interfaces are 50 × 50 μm.An anion-selective phosphonium-based polycation (poly(vinylbenzyl chloride) (PVBC) quaternized by triphenylphospine, PVBPPh3) was synthesized and compared to the ammonium-based polycation (PVBC quaternized by dimethylbenzylamine, qPVBC) previously used in BM diodes2 and transistors,7, 8 when included in BM diode structures together with polystyrenesulfonate (PSS) as the cation-selective material (Figure (Figure1b).1b). Three types of BM diodes were fabricated using standard photolithography patterning (Figure (Figure1c),1c), either with qPVBC (BM1A and BM2A) or PVBPPh3 (BM1P) as polycation and either with (BM2A) or without PEG (BM1A and BM1P). Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) electrodes covered with aqueous electrolytes were used to convert electronic input signals into ionic currents through the BMs, according to the redox reaction PEDOT+:PSS + M+ + e ↔ PEDOT0 + M+:PSS.The rectifying behavior of the diodes was evaluated using linear sweep voltammetry (Figure (Figure2).2). The BM1A diode exhibited an increase in the reverse bias current for voltages lower than −1 V, a typical signature of EFE water dissociation,10, 14 which decreased the current rectification at ±4 V to 6.14. No such deviation in the reverse bias current was observed for BM2A and BM1P, which showed rectification ratios of 751 and 196, respectively. In fact, for BM1P, no evident EFE water dissociation was observed even at −40 V (see inset of Figure Figure2).2). Thus, the PVBPPh3 polycation allows BM diodes to operate at voltages beyond the ±1 V window with maintained high ion current rectification.Open in a separate windowFigure 2Linear sweep voltammetry from −4 to +4 V (25 mV/s) for the BM diodes. The inset shows BM1P scanning from −40 V to +4 V (250 mV/s).The dynamic performance of the diodes was tested by applying a square wave pulse from reverse bias to a forward bias voltage of 4 V with 5–90 s pulse duration (Figure (Figure3).3). To access the amount of charge injected and extracted during the forward bias and subsequent turn off, the current through the device was integrated. For BM2A, we observed that the fall time increased with the duration of the forward bias pulse. This hysteresis is due to the efficient storage of ions in the large PEG volume, with no ions crossing the BM due to Donnan exclusion failure.2 As a result, during the initial period of the return to reverse bias, a large amount of charge needs to be extracted in order to deplete the BM. After a 90 s pulse, 90.6% of the injected charge during the forward bias was extracted before turn-off. This may be contrasted with BM1P, where the fall time is hardly affected by the pulse duration, and the extracted/injected ratio is only 15.4% for a 90 s pulse. For this type of BM, the interface quickly becomes saturated with ions during forward bias, leading to Donnan exclusion failure and transport of ions across the BM.4 Thus, less charge needs to be extracted to deplete the BM, allowing for faster fall times and significantly reduced hysteresis.Open in a separate windowFigure 3Switching characteristics (5, 10, 20, 30, 60, or 90 s pulse) and ion accumulation (at 90 s pulse) of the BM2A and BM1P diodes. BM1A showed similar characteristics as BM1P when switched at ±1V (see supplementary material).24Since the neutral electrolyte is no longer required to obtain high ion current rectification over a wide potential range, the size of the BM can be miniaturized. This translates into higher component density when integrating the BM diode into ionic/chemical circuits. A miniaturized BM1P diode was constructed, where the interface of the BM was shrunk from 50 μm to 10 μm. The 10 μm device showed similar IV and switching characteristics as before (Figure (Figure4),4), but with higher ion current rectification ratio (over 800) and decreased rise/fall times (corresponding to 90%/–10% of forward bias steady state) from 10 s/12.5 s to 4 s/4 s. Since the overlap area is smaller, a probable reason for the faster switching times is the reduced amount of ions needed to saturate and deplete the BM interface. In comparison to our previous reported low hysteresis BM diode,2 this miniaturized polyphosphonium-based devices shows the same rise and fall times but increased rectification ratio.Open in a separate windowFigure 4(a) Linear sweep voltammetry and (b) switching performance of a BM1P diode with narrow junction.In summary, by using polyphosphonium instead of polyammonium as the polycation in BM ion diodes the EFE water dissociation can be entirely suppressed over a large operational voltage window, supporting the theory that a weak base, such as a tertiary amine, is needed for efficient EFE water dissociation.17, 18 As no additional neutral layer at the BM interface is needed, ion diodes that operate outside the usual EFE water dissociation window of ±1 V can be constructed using less active layers, fewer processing steps and with relaxed alignment requirement as compared to polyammonium-based devices. This enables the fabrication of ion rectification devices with an active interface as low as 10 μm. Furthermore, the exclusion of a neutral layer improves the overall dynamic performance of the BM ion diode significantly, as there is less hysteresis due to ion accumulation. Previously, the hysteresis of BM ion diodes has been mitigated by designing the diode so that only H+ and OH enters the BM, which then recombines into water.2 Such diodes also show high ion current rectification ratio and switching speed but are more complex to manufacture, and their application in organic bioelectronic systems is limited due to the H+/OH production. By instead using the polyphosphonium-based BM diode, reported here, we foresee ionic, complex, and miniaturized circuits that can include charged biomolecules as the signal carrier to regulate functions and the physiology in cell systems, such as in biomolecule and drug delivery applications, and also in lab-on-a-chip applications.  相似文献   

20.
Construction of cyclic codes over GF(4) for DNA computing     
《Journal of The Franklin Institute》2006,343(4-5):448-457
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号