首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This paper studies the fault-tolerant control (FTC) problem of a class of strict-feedback nonlinear systems. First, we put forward a key theorem which shows that type-B Nussbaum functions can be extended to the cases containing multiple Nussbaum functions in the same Lyapunov inequality under certain conditions. Then, by using the techniques of Nussbaum functions and adaptive control, a new fault-tolerant control scheme is proposed. Compared with the previous work, this paper considers unknown time-varying control coefficients and unknown time-varying fault coefficients of actuators. It is proved that all the signals of the closed-loop system are globally bounded and the tracking error converges to zero asymptotically. Finally, simulations are provided to verify the effectiveness of the proposed control scheme.  相似文献   

2.
In this paper, a novel adaptive control scheme is investigated based on the backstepping design for a class of stochastic nonlinear systems with unmodeled dynamics and time-varying state delays. The radial basis function neural networks are used to approximate the unknown nonlinear functions obtained by using Ito differential formula and Young?s inequality. The unknown time-varying delays and the unmodeled dynamics are dealt with by constructing appropriate Lyapunov–Krasovskii functions and introducing available dynamic signal. It is proved that all signals in the closed-loop system are bounded in probability and the error signals are semi-globally uniformly ultimately bounded (SGUUB) in mean square or the sense of four-moment. Simulation results illustrate the effectiveness of the proposed design.  相似文献   

3.
A finite set expansion method is presented for the suboptimal control of linear time-varying systems with both complete and incomplete state availability. By projecting the dynamical model of the system into a subspace of Walsh signals, we are able to implement the control by employing a computational method which involves constant coefficients. The method is illustrated by an example.  相似文献   

4.
A control scheme based on dynamic gains is proposed for the time-varying nonlinear time-delay systems with unknown control coefficients. A class of Nussbaum functions are introduced to deal with the problem of unknown control directions. Dynamic gains technique and Lyapunov–Krasovskii functional are developed to handle the time delays in nonlinear system. It is shown that the system state is regulated to origin asymptotically, and the boundedness of all closed-loop signals is guaranteed. Simulation results are provided to demonstrate the effectiveness of the proposed methodology.  相似文献   

5.
This paper deals with the stability problem of a class of stochastic switching singular systems with jumps, where all the continuous subsystems can be unstable. By introducing multiple time-varying discretized Lyapunov functions and designing novel switching signals via mode-dependent dwell times, sufficient conditions ensuring mean square and almost sure stabilities of the considered systems are obtained. On the basis of these findings, some existing results in the literature are further generalized. We finally provide a numerical example to verify the applicability of the proposed theoretical results.  相似文献   

6.
7.
The main results of the paper are improvements on the stability analysis of Halanay inequalities with time-varying coefficients in both continuous-time and discrete-time setting. Three classes of improved conditions are established to ensure that the solution to the Halanay inequality is uniformly exponentially stable. The merit of the proposed new conditions is that the coefficients of the Halanay inequality can be unbounded and sign indefinite. This is achieved by using the notion and properties of uniformly asymptotic stable (UAS) functions. Based on the improved stability conditions for the Halanay inequality and the Lyapunov Razumikhin approach, three classes of sufficient conditions are established for testing the stability of time-varying time-delay systems. Finally, the advantages of the proposed methods are illustrated by some numerical examples with some of them borrowed from the literature.  相似文献   

8.
The main contribution of this paper is to develop an adaptive output-feedback control approach for a class of uncertain nonlinear systems with unknown time-varying delays in the pure-feedback form. Both the non-affine nonlinear functions and the unknown time-varying delayed functions related to all state variables are considered. These conditions make the controller design difficult and challenging because the output-feedback controller should be designed using only the output information. In order to overcome these conditions, we design an observer-based adaptive dynamic surface controller where the time-delay effects are compensated by using appropriate Lyapunov–Krasovskii functionals and the function approximation technique using neural networks. A first-order filter is added to the control input to avoid the algebraic loop problem caused by the non-affine structure. It is proved that all the signals in the closed-loop system are semi-globally uniformly bounded and the tracking error converges to an adjustable neighborhood of the origin.  相似文献   

9.
A robust low-complexity design methodology is presented for global tracking of uncertain high-order nonlinear systems with unknown time-varying delays. In contrast to the existing literature, this paper assumes that nonlinear bounding functions of time-delay nonlinearities and high powers of virtual and actual control variables are unknown. Furthermore, a delay-independent tracking scheme using nonlinearly transformed error surfaces is simply designed without the knowledge of nonlinear bounding functions of model nonlinearities, the adaptive technique, and the calculation of repeated time derivatives of certain signals. Thus, the proposed tracker is implemented with low complexity. It is recursively shown that the tracking error is preserved within the predefined bounds of transient and steady-state performance in the Lyapunov sense.  相似文献   

10.
This paper studies parameter estimation for a class of linear, continuous, time-varying dynamic systems whose state-space model's matrices are affine combinations of static matrix coefficients and the aforementioned time-varying scalar parameters. It is assumed that the coefficient matrices are all known, that the state is mensurable, and that the parameters are bounded piecewise continuous functions of time. Estimation methods are developed from basic equations for a single parameter first, and later extended to multiple parameters.  相似文献   

11.
《Journal of The Franklin Institute》2023,360(13):10275-10296
We study the exponential stability and boundedness problem for perturbed nonlinear time-varying systems using Lyapunov Functions with indefinite derivatives. As the limiting function for the perturbation term, we use different forms and give stability and boundedness conditions in terms of the coefficients in these bounds. Contrary to most of the available conditions, we allow the coefficients to be unbounded. But instead, we put forward a condition that requires a series produced by coefficients to be limited and exponentially decaying. We perform our results on Linear time-varying systems and generalize many of the available results.  相似文献   

12.
《Journal of The Franklin Institute》2022,359(18):10355-10391
In this paper, an adaptive neural finite-time tracking control is studied for a category of stochastic nonlinearly parameterized systems with multiple unknown control directions, time-varying input delay, and time-varying state delay. To this end, a novel criterion of semi-globally finite-time stability in probability (SGFSP) is proposed, in the sense of Lyapunov, for stochastic nonlinear systems with multiple unknown control directions. Secondly, a novel auxiliary system with finite-time convergence is presented to cope with the time-varying input delay, the appropriate Lyapunov Krasovskii functionals are utilized to compensate for the time-varying state delay, Nussbaum functions are exploited to identify multiple unknown control directions, and the neural networks (NNs) are applied to approximate the unknown functions of nonlinear parameters. Thirdly, the fraction dynamic surface control (FDSC) technique is embedded in the process of designing the controller, which not only the “explosion of complexity” problems are successfully avoided in traditional backstepping methods but also the command filter convergence can be obtained within a finite time to lead greatly improved for the response speed of command filter. Meanwhile, the error compensation mechanism is established to eliminate the errors of the command filter. Then, based on the proposed novel criterion, all closed-loop signals of the considered systems are SGPFS under the designed controller, and the tracking error can drive to a small neighborhood of the origin in a finite time. In the end, three simulation examples are applied to demonstrate the validity of the control method.  相似文献   

13.
In this paper, the problem of delay-dependent stability analysis of fractional-order systems with time-varying delay is investigated. First, a class of novel fractional-order integral inequalities for quadratic functions by constructing appropriate auxiliary functions is proposed, which has been proven to be useful in analyzing fractional-order systems with time-varying delay. Based on these proposed inequalities, the Lyapunov–Krasovskii functions are designed to deal with the time-varying delay terms, reducing the conservatism of the stability criteria. Furthermore, delay-dependent criteria are derived to achieve asymptotic stability of fractional-order systems with time-varying delay. Finally, two examples are provided to illustrate the effectiveness and feasibility of the proposed stability criteria.  相似文献   

14.
《Journal of The Franklin Institute》2022,359(17):10017-10037
This paper investigates the positivity and stability of discrete-time coupled homogeneous systems with time-varying delays. First, an explicit criterion is given for the positivity of discrete-time coupled homogeneous delay systems. Then, by using the properties of homogeneous functions, a sufficient condition is presented for ensuring the stability of the considered systems. Moreover, the obtained result is applied to study the stability of positive singular systems with time-varying delay. It should be noted that it is the first time that the stability result is given for discrete-time coupled homogeneous positive systems with time-varying delays. Two numerical examples are presented to demonstrate the effectiveness of the derived results.  相似文献   

15.
In this paper, the event-triggered non-fragile H fault detection filter is designed for a class of discrete-time nonlinear systems subject to time-varying delays and channel fadings. The Lth Rice fading model is utilized to reflect the actual received measurement signals, and its channel coefficients own arbitrary probability density functions on interval [0,1]. The event-based filter is constructed to reduce unnecessary data transmissions in the communication channel, which only updates the measurement signal to the filter when the prespecified “event” is triggered. Multiplicative gain variations are utilized to describe the phenomenon of parameter variations in actual implementation of the filter. Based on Lyapunov stability theory, stochastic analysis technology along with linear matrix inequalities (LMIs) skills, sufficient conditions for the existence of the non-fragile fault detection filter are obtained which make the filtering error system stochastically stable and satisfy the H constraint. The gains of the filter can be calculated out by solving the feasible solution to a certain LMI. A simulation example is given to show the effectiveness of the proposed method.  相似文献   

16.
In practice, many controlled plants are equipped with MIMO non-affine nonlinear systems. The existing methods for tracking control of time-varying nonlinear systems mostly target the systems with special structures or focus only on the control based on neural networks which are unsuitable for real-time control due to their computation complexity. It is thus necessary to find a new approach to real-time tracking control of time-varying nonlinear systems. In this paper, a control scheme based on multi-dimensional Taylor network (MTN) is proposed to achieve the real-time output feedback tracking control of multi-input multi-output (MIMO) non-affine nonlinear time-varying discrete systems relative to the given reference signals with online training. A set of ideal output signals are selected by the given reference signals, the optimal control laws of the system relative to the selected ideal output signals are set by the minimum principle, and the corresponding optimal outputs are taken as the desired output signals. Then, the MTN controller (MTNC) is generated automatically to fit the optimal control laws, and the conjugate gradient (CG) method is employed to train the network parameters offline to obtain the initial parameters of MTNC for online learning. Addressing the time-varying characteristics of the system, the back-propagation (BP) algorithm is implemented to adjust the weight parameters of MTNC for its desired real-time output tracking control by the given reference signals, and the sufficient condition for the stability of the system is identified. Simulation results show that the proposed control scheme is effective and the actual output of the system tracks the given reference signals satisfactorily.  相似文献   

17.
Data compression techniques are commonly used to achieve a low bit rate in the digital representation of signals for efficient processing, transmission, and storage. In this paper, a new technique for lossless compression of seismic data is introduced. The technique consists of two stages. The first stage is a modified linear prediction with discrete coefficients that is developed based on the assumption that the seismic data can be modeled as a sum of finite number of complex sinusoids in additive noise. In the second stage, the parameters and residual sequence of seismic data model are bi-level coded. Experimental results performed using real seismic data are presented to demonstrate the effectiveness of the new modeling approach.  相似文献   

18.
Sampled-data control for time-delay systems   总被引:1,自引:0,他引:1  
The sampled-data systems are hybrid ones involving continuous time and discrete time signals, which makes the traditional analysis and synthesis methodologies of time-delay systems unable to be directly used in the cases of hybrid systems with time-delay. The primary disadvantages of current design techniques of sampled-data control are their inabilities to deal effectively with time-delay and the model uncertainty. In this paper, we generalized the analysis methodology of time-delay systems to that of the hybrid systems with time-delay and uncertainty, which developed a design procedure of sampled-data control for time-delay systems. Asymptotic stability of the time-delay hybrid systems was developed. The time-delay dependent robust sampled-data control for the time-varying delay of an uncertain linear system was then discussed. The results were described as linear matrix inequalities, which can be solved using newly released LMITool.  相似文献   

19.
This paper considers a class of nonlinear fractional-order multi-agent systems (FOMASs) with time-varying delay and unknown dynamics, and a new robust adaptive control technique is proposed for cooperative control. The unknown nonlinearities of the systems are online approximated by the introduced recurrent general type-2 fuzzy neural network (RGT2FNN). The unknown nonlinear functions are estimated, simultaneously with the control process. In other words, at each sample time the parameters of the proposed RGT2FNNs are updated and then the control signals are generated. In addition to the unknown dynamics, the orders of the fractional systems are also supposed to be unknown. The biogeography-based optimization algorithm (BBO) is extended to estimate the unknown parameters of RGT2FNN and fractional-orders. A LMI based compensator is introduced to guarantee the robustness of the proposed control system. The excellent performance and effectiveness of the suggested method is verified by several simulation examples and it is compared with the other methods. It is confirmed that the introduced cooperative controller results in a desirable performance in the presence of time-varying delay, unknown dynamics, and unknown fractional-orders.  相似文献   

20.
In this paper, we define a class of almost orthogonal rational functions of Legendre type in a new manner. Relations of these functions with classical exponentional functions orthogonal over interval (0, ), as well as classical polynomials orthogonal over (0, 1) are explained. Defining relations of these functions can be used for designing almost orthogonal filters. These filters are generators of orthogonal signals and can be successfully applied in finding the best signal approximation in the sense of the mean square error. The filters orthogonal property enables building of physical (in this case electrical) models of dynamical systems (the sources of signals to be approximated) either with less components for the same model accuracy or higher accuracy for the same number of components than the other known models. New filters represent further improvement of previously designed filters, by the same authors, in the sense of simplicity, higher accuracy, lesser approximation time and even a possibility to approximate signals generated by systems with built-in imperfections. Series of experiments were performed to analyze the dependence of approximation accuracy and the number of filters sections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号