首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Li TL  Gleeson M 《Journal of sports sciences》2004,22(11-12):1015-1024
The purpose of this study was to establish the effect of exercise at different times of day on saliva flow rate, immunoglobulin A (sIgA) concentration and secretion rate, and alpha-amylase activity, and to establish how these parameters change following a second exercise bout performed on the same day. In a counterbalanced design, eight male volunteers participated in three experimental trials separated by at least 4 days. On the trial with afternoon exercise only, the participants cycled for 2 h at 60% VO2max starting at 14:00 h. On the other two trials, participants performed either two bouts of exercise at 60% VO2max for 2 h (the first started at 09:00 h and the second started at 14:00 h) or a separate resting trial. Unstimulated saliva samples were obtained 10 min before exercise, after 58 - 60 min and during the last 2 min of exercise, and at 1 h and 2 h after exercise. Venous blood samples were taken 5 min before exercise and immediately after exercise for both bouts. Participants remained fasted between 23:00 h on the day before the trials and 18:00 h on the day of the trial. Circadian variations were found in sIgA concentration, which decreased with time from its highest value in the early morning to its lowest value in the evening, and salivary alpha-amylase secretion rate, which increased from its lowest value in the morning to its highest value in the late afternoon. Cycling at 60% VO2max for 2 h significantly decreased saliva flow rate, increased sIgA concentration and alpha-amylase activity, but did not influence sIgA secretion rate. Performing prolonged cycling at different times of day did not differentially affect the salivary and plasma hormonal responses in the short term. Performance of a second prolonged exercise bout elicited a greater plasma stress hormone response but did not appear to compromise oral immunity acutely. These findings also suggest that, in terms of saliva secretion, sIgA and alpha-amylase responses, a 3 h rest is enough to recover from previous strenuous exercise. During such exercise, sympathetic stimulation appears to be strong enough to inhibit saliva flow rate; however, it appears that it does not increase sIgA output via transcytosis.  相似文献   

2.
The purpose of this study was to assess the effect of carbohydrate (CHO) feeding during different periods of two 90-min cycling bouts (the first bout began at 09:00?h and the second bout began at 13:30 h) at 60% maximal oxygen uptake(VO2max) on saliva flow rate and saliva immunoglobulin A (sIgA) responses to the second exercise bout. The study consisted of three investigations: carbohydrate supplementation during (1) the first hour of the recovery interval (CHO-REC), (2) during the first bout of exercise and (3) during the second bout of exercise. Each investigation included two trials completed in a counterbalanced order and separated by at least 4 days. Participants consumed a lemon-flavoured 10% w/v carbohydrate beverage or placebo (22 ml.kg-1 body mass) in the first hour of the recovery interval (n=8) and 500 ml just before exercise, followed by 250 ml every 20 min during exercise in the first (n=9) and second exercise bouts (n=9). Timed unstimulated saliva samples were collected at 10 min before exercise, after 48-50 min of exercise and during the last 2 min of exercise, at 1 h post exercise, 2 h post exercise (first exercise bout only), and 18 h post exercise (second exercise bout only). Venous blood samples were taken 5 min before exercise and immediately after exercise for both exercise bouts in all trials. The main findings of the present study were as follows. First, carbohydrate ingestion during both exercise bouts, but not during the recovery interval, better maintained plasma glucose concentrations and attenuated the increase in plasma adrenaline and cortisol concentrations after the second exercise bout compared with placebo. Second, carbohydrate feeding had no effect on saliva flow rate and sIgA secretion rate compared with placebo. Third, saliva flow rate and sIgA concentration returned to pre-exercise bout 1 values within 2 h in all trials. Fourth, there was no delayed effect of exercise on oral immunity. These findings suggest that carbohydrate ingestion during the first or second bout of exercise, but not during the recovery interval, is likely to better maintain plasma glucose concentrations and attenuate the responses of plasma stress hormones to a second exercise bout than ingestion of fluid alone. Two bouts of 90 min cycling at 60% VO2max on the same day appears to inhibit saliva flow rate during the second exercise bout but does not alter sIgA transcytosis. Our results show that carbohydrate ingestion during any period of two prolonged exercise bouts does not induce different effects on oral immunity compared with placebo.  相似文献   

3.
The purpose of this investigation was to study the effects of an acute bout of aerobic exercise on state anxiety of women while controlling for iron status (hemoglobin and serum ferritin). Participants were 24 active women, ages 18-20 years (n = 12) and 35-45 years (n = 12). In addition to a nonexercise control condition, participants completed one exercise bout at 60% maximal oxygen uptake (VO2max) and one at 80% VO2max. Each exercise session consisted of a 33-min bout in which participants exercised at their target intensities for a 20-min segment. Immediately before each exercise trial, participants were given the Spielberger State Anxiety Inventory (SAI). The SAI was again administered immediately following the exercise session and at 30, 60, and 90 min postexercise. Data were analyzed using an Age x Intensity x Time (2 x 3 x 5) repeated measures analysis of covariance (ANCOVA) with iron status serving as the covariate. The ANCOVA on state anxiety yielded significant effects for time (p < .0001, eta2(p) = .48), the Intensity x Time interaction (p = .0006, eta2(p) = .19), and the Intensity x Age interaction (p = .04, eta2(p) = .15). All three exercise conditions (including control) showed a decline in state anxiety across time, but the 80% VO2max condition showed a sharper decline. Intensity of exercise conditions did not differ in state anxiety at baseline or immediately after exercise, but a difference favoring the 80% VO2max condition over the control condition emerged at 30 min postexercise. After controlling for iron status, older women who exercised at 80% VO2max exhibited lower SAI scores compared to the control condition.  相似文献   

4.
We examined the effects of pre-exercise sodium bicarbonate (NaHCO3) ingestion on the slow component of oxygen uptake (VO2) kinetics in seven professional road cyclists during intense exercise. One hour after ingesting either a placebo or NaHCO3 (0.3 g x kg body mass(-1)), each cyclist (age, 25 +/- 2 years; VO2max, 74.7 +/- 5.9 ml x kg(-1) x min(-1); mean +/- s) performed two bouts of 6 min duration at an intensity of 90% VO2max interspersed by 8 min of active recovery. Gas exchange and blood data (pH, blood lactate concentration and [HCO3-]) were collected during the tests. In both bouts, the slow component of VO2 was defined as the difference between end-exercise VO2 and the VO2 at the end of the third minute. No significant difference was found in the slow component of VO2 between conditions in the first (NaHCO3, 210 +/- 69 ml; placebo, 239 +/- 105 ml) or second trial (NaHCO3, 123 +/- 88 ml; placebo, 197 +/- 101 ml). In conclusion, pre-exercise NaHCO3 ingestion did not significantly attenuate the VO2 slow component of professional road cyclists during high-intensity exercise.  相似文献   

5.
The aim of this study was to devise a laboratory-based protocol for a motorized treadmill that was representative of work rates observed during soccer match-play. Selected physiological responses to this soccer-specific intermittent exercise protocol were then compared with steady-rate exercise performed at the same average speed. Seven male university soccer players (mean +/- s: age 24 +/- 2 years, height 1.78 +/- 0.1 m, mass 72.2 +/- 5.0 kg, VO2max 57.8 +/- 4 ml x kg(-1) x min(-1)) completed a 45-min soccer-specific intermittent exercise protocol on a motorized treadmill. They also completed a continuous steady-rate exercise session for an identical period at the same average speed. The physiological responses to the laboratory-based soccer-specific protocol were similar to values previously observed for soccer match-play (oxygen consumption approximately 68% of maximum, heart rate 168 +/- 10 beats x min(-1)). No significant differences were observed in oxygen consumption, heart rate, rectal temperature or sweat production rate between the two conditions. Average minute ventilation was greater (P < 0.05) in intermittent exercise (81.3 +/- 0.2 l x min(-1)) than steady-rate exercise (72.4 +/- 11.4 l x min(-1)). The rating of perceived exertion for the session as a whole was 15 +/- 2 during soccer-specific intermittent exercise and 12 +/- 1 for continuous exercise (P < 0.05). The physiological strain associated with the laboratory-based soccer-specific intermittent protocol was similar to that associated with 45 min of soccer match-play, based on the variables measured, indicating the relevance of the simulation as a model of match-play work rates. Soccer-specific intermittent exercise did not increase the demands placed on the aerobic energy systems compared to continuous exercise performed at the same average speed, although the results indicate that anaerobic energy provision is more important during intermittent than during continuous exercise at the same average speed.  相似文献   

6.
7.
The purpose of this study was to assess the validity of predicting the maximal oxygen uptake (VO2(max)) of sedentary men from sub-maximal VO2 values obtained during a perceptually regulated exercise test. Thirteen healthy, sedentary males aged 29-52 years completed five graded exercise tests on a cycle ergometer. The first and fifth test involved a graded exercise test to determine VO2(max). The two maximal graded exercise tests were separated by three sub-maximal graded exercise tests, perceptually regulated at 3-min RPE intensities of 9, 11, 13, 15, and 17 on the Borg ratings of perceived exertion (RPE) scale, in that order. After confirmation that individual linear regression models provided the most appropriate fit to the data, the regression lines for the perceptual ranges 9-17, 9-15, and 11-17 were extrapolated to RPE 20 to predict VO2(max). There were no significant differences between VO2(max) values from the graded exercise tests (mean 43.9 ml x kg(-1) x min(-1), s = 6.3) and predicted VO2(max) values for the perceptual ranges 9-17 (40.7 ml x kg(-1) x min(-1), s = 2.2) and RPE 11-17 (42.5 ml x kg(-1) x min(-1), s = 2.3) across the three trials. The predicted VO2(max) from the perceptual range 9-15 was significantly lower (P < 0.05) (37.7 ml x kg(-1) x min(-1), s = 2.3). The intra-class correlation coefficients between actual and predicted VO2(max) for RPE 9-17 and RPE 11-17 across trials ranged from 0.80 to 0.87. Limits of agreement analysis on actual and predicted VO2 values (bias +/- 1.96 x S(diff)) were 3.4 ml x kg(-1) x min(-1) (+/- 10.7), 2.4 ml x kg(-1) x min(-1) (+/- 9.9), and 3.7 ml x kg(-1) x min(-1) (+/- 12.8) (trials 1, 2, and 3, respectively) of RPE range 9-17. Results suggest that a sub-maximal, perceptually guided graded exercise test provides acceptable estimates of VO2(max) in young to middle-aged sedentary males.  相似文献   

8.
Exercise intensity and metabolic response in singles tennis   总被引:5,自引:0,他引:5  
The aim of this study was to determine exercise intensity and metabolic response during singles tennis play. Techniques for assessment of exercise intensity were studied on-court and in the laboratory. The on-court study required eight State-level tennis players to complete a competitive singles tennis match. During the laboratory study, a separate group of seven male subjects performed an intermittent and a continuous treadmill run. During tennis play, heart rate (HR) and relative exercise intensity (72 +/- 1.9% VO2max; estimated from measurement of heart rate) remained constant (83.4 +/- 0.9% HRmax; mean +/- s(x)) after the second change of end. The peak value for estimated play intensity (1.25 +/- 0.11 steps x s(-1); from video analysis) occurred after the fourth change of end (P< 0.005). Plasma lactate concentration, measured at rest and at the change of ends, increased 175% from 2.13 +/- 0.32 mmol x l(-1) at rest to a peak 5.86 +/- 1.33 mmol x l(-1) after the sixth change of end (P < 0.001). A linear regression model, which included significant terms for %HRmax (P< 0.001), estimated play intensity (P < 0.001) and subject (P < 0.00), as well as a %HRmax subject interaction (P < 0.05), accounted for 82% of the variation in plasma lactate concentration. During intermittent laboratory treadmill running, % VO2peak estimated from heart rate was 17% higher than the value derived from the measured VO2 (79.7 +/- 2.2% and 69.0 +/- 2.5% VO2peak respectively; P< 0.001). The %VO2peak was estimated with reasonable accuracy during continuous treadmill running (5% error). We conclude that changes in exercise intensity based on measurements of heart rate and a time-motion analysis of court movement patterns explain the variation in lactate concentration observed during singles tennis, and that measuring heart rate during play, in association with preliminary fitness tests to estimate VO2, will overestimate the aerobic response.  相似文献   

9.
In this study, we assessed exercise intensity in 20 water polo games of different duration. The hypothesis that right wing players perform at a higher intensity than back and forward central players was also tested. Thirty water polo players, equally split between three field positions, participated in the study. Initially, their performance-related physiological capabilities were evaluated. Subsequently, during water polo games of short (4 x 7-min periods) or long duration (4 x 9-min periods), heart rate was monitored continuously and blood lactate concentration was measured at the end of each period. Activity patterns were also recorded using a video camera. Mean heart rate over the entire game was 156 +/- 18 beats x min(-1). Overall exercise intensity fluctuated around a value corresponding to the lactate threshold (4.03 +/- 0.96 mmol x l(-1), 86 +/- 5% of peak heart rate) and decreased (P < 0.003) with game time (4.22 +/- 1.8 and 3.47 +/- 1.9 mmol x l(-1) in the second and fourth quarter, respectively). During the last 6 min, heart rate was higher (P < 0.001) in games of short duration (156 +/- 3 beats x min(-1)) than in games of long duration (152 +/- 8 beats x min(-1)). Video analysis showed that the percentage of time spent in low-intensity activities (i.e. "out of game") was lower (23 vs. 26%), whereas that in high-intensity activities (i.e. "sprinting crawl") was higher (21 vs. 19%), in games of short compared with long duration. No difference was observed among players of various field positions in any of the variables examined. Thus during match-play, games of long duration produced significantly lower heart rate responses than games of short duration, and the physiological response exhibited by the players was not affected by field position. The water polo authorities should consider these results before changing game duration and coaches should prepare their athletes accordingly.  相似文献   

10.
The aim of this study was to determine the effect of carbohydrate (CHO) versus placebo (PLA) beverage consumption on the immune and plasma cortisol responses to a soccer-specific exercise protocol in 8 university team soccer players. In a randomized, counterbalanced design, the players received carbohydrate or placebo beverages before, during and after two 90 min soccer-specific exercise bouts (3 days apart) designed to mimic the activities performed and the distance covered in a typical soccer match. Blood and saliva samples were collected before, during and after the exercise protocol. Plasma lactate concentration increased to approximately 4 mmol x l(-1) at 45 and 90 min of exercise in both treatments (P<0.01). Plasma glucose concentration was significantly lower after 90 min of exercise with ingestion of the placebo than the carbohydrate (PLA: 4.57+/-0.12 mmol x l(-1); CHO: 5.49+/-0.11 mmol x l(-1); P<0.01). The pattern of change in plasma cortisol, circulating lymphocyte count and saliva immunoglobulin A secretion did not differ between the carbohydrate and placebo trials. Blood neutrophil counts were 14% higher 1 h after the placebo trial than the carbohydrate trial (PLA: 4.8+/-0.5x10(9) cells x l(-1); CHO: 4.2+/-0.5x10(9) cells x l(-1); P = 0.06), but the treatment had no effect on the degranulation response of blood neutrophils stimulated by bacterial lipopolysaccharide. We conclude that, although previous studies have shown that carbohydrate feeding is effective in attenuating immune responses to prolonged continuous strenuous exercise, the same cannot be said for a soccer-specific intermittent exercise protocol. When overall exercise intensity is moderate, and changes in plasma glucose, cortisol and immune variables are relatively small, it would appear that carbohydrate ingestion has only a minimal influence on the immune response to exercise.  相似文献   

11.
Factors influencing physiological responses to small-sided soccer games   总被引:3,自引:2,他引:1  
The aim of this study was to examine the effects of exercise type, field dimensions, and coach encouragement on the intensity and reproducibility of small-sided games. Data were collected on 20 amateur soccer players (body mass 73.1 +/- 8.6 kg, stature 1.79 +/- 0.05 m, age 24.5 +/- 4.1 years, VO(2max) 56.3 +/- 4.8 ml x kg(-1) x min(-1)). Aerobic interval training was performed during three-, four-, five- and six-a-side games on three differently sized pitches, with and without coach encouragement. Heart rate, rating of perceived exertion (RPE) on the CR10-scale, and blood lactate concentration were measured. Main effects were found for exercise type, field dimensions, and coach encouragement (P < 0.05), but there were no interactions between any of the variables (P > 0.15). During a six-a-side game on a small pitch without coach encouragement, exercise intensity was 84 +/- 5% of maximal heart rate, blood lactate concentration was 3.4 +/- 1.0 mmol x l(-1), and the RPE was 4.8. During a three-a-side game on a larger pitch with coach encouragement, exercise intensity was 91 +/- 2% of maximal heart rate, blood lactate concentration was 6.5 +/- 1.5 mmol x l(-1), and the RPE was 7.2. Typical error expressed as a coefficient of variation ranged from 2.0 to 5.4% for percent maximal heart rate, from 10.4 to 43.7% for blood lactate concentration, and from 5.5 to 31.9% for RPE. The results demonstrate that exercise intensity during small-sided soccer games can be manipulated by varying the exercise type, the field dimensions, and whether there is any coach encouragement. By using different combinations of these factors, coaches can modulate exercise intensity within the high-intensity zone and control the aerobic training stimulus.  相似文献   

12.
The purpose of this study was to assess the effect of carbohydrate (CHO) feeding during different periods of two 90-min cycling bouts (the first bout began at 09:00?h and the second bout began at 13:30?h) at 60% maximal oxygen uptake ([Vdot]O2max) on saliva flow rate and saliva immunoglobulin A (sIgA) responses to the second exercise bout. The study consisted of three investigations: carbohydrate supplementation during (1) the first hour of the recovery interval (CHO-REC), (2) during the first bout of exercise and (3) during the second bout of exercise. Each investigation included two trials completed in a counterbalanced order and separated by at least 4 days. Participants consumed a lemon-flavoured 10% w/v carbohydrate beverage or placebo (22?ml?·?kg?1 body mass) in the first hour of the recovery interval (n = 8) and 500?ml just before exercise, followed by 250?ml every 20?min during exercise in the first (n = 9) and second exercise bouts (n = 9). Timed unstimulated saliva samples were collected at 10?min before exercise, after 48?–?50?min of exercise and during the last 2?min of exercise, at 1?h post exercise, 2?h post exercise (first exercise bout only), and 18?h post exercise (second exercise bout only). Venous blood samples were taken 5?min before exercise and immediately after exercise for both exercise bouts in all trials. The main findings of the present study were as follows. First, carbohydrate ingestion during both exercise bouts, but not during the recovery interval, better maintained plasma glucose concentrations and attenuated the increase in plasma adrenaline and cortisol concentrations after the second exercise bout compared with placebo. Second, carbohydrate feeding had no effect on saliva flow rate and sIgA secretion rate compared with placebo. Third, saliva flow rate and sIgA concentration returned to pre-exercise bout 1 values within 2?h in all trials. Fourth, there was no delayed effect of exercise on oral immunity. These findings suggest that carbohydrate ingestion during the first or second bout of exercise, but not during the recovery interval, is likely to better maintain plasma glucose concentrations and attenuate the responses of plasma stress hormones to a second exercise bout than ingestion of fluid alone. Two bouts of 90?min cycling at 60% [Vdot]O2max on the same day appears to inhibit saliva flow rate during the second exercise bout but does not alter sIgA transcytosis. Our results show that carbohydrate ingestion during any period of two prolonged exercise bouts does not induce different effects on oral immunity compared with placebo.  相似文献   

13.
In the present study, we assessed the effects of exercise intensity on salivary immunoglobulin A (s-IgA) and salivary lysozyme (s-Lys) and examined how these responses were associated with salivary markers of adrenal activation. Using a randomized design, 10 healthy active men participated in three experimental cycling trials: 50% maximal oxygen uptake (VO2max), 75%VO2max, and an incremental test to exhaustion. The durations of the trials were the same as for a preliminary incremental test to exhaustion (22.3 min, sx = 0.8). Timed, unstimulated saliva samples were collected before exercise, immediately after exercise, and 1 h after exercise. In the incremental exhaustion trial, the secretion rates of both s-IgA and s-Lys were increased. An increase in s-Lys secretion rate was also observed at 75%VO2max. No significant changes in saliva flow rate were observed in any trial. Cycling at 75%VOmax and to exhaustion increased the secretion of alpha-amylase and chromogranin A immediately after exercise; higher cortisol values at 75%VO2max and in the incremental exhaustion trial compared with 50%VO2max were observed 1 h immediately after exercise only. These findings suggest that short-duration, high-intensity exercise increases the secretion rate of s-IgA and s-Lys despite no change in the saliva flow rate. These effects appear to be associated with changes in sympathetic activity and not the hypothalamic - pituitary - adrenal axis.  相似文献   

14.
The aim of this study was to devise a laboratory-based protocol for a motorized treadmill that was representative of work rates observed during soccer match-play. Selected physiological responses to this soccer-specific intermittent exercise protocol were then compared with steady-rate exercise performed at the same average speed. Seven male university soccer players (mean - s : age 24 - 2 years, height 1.78 - 0.1 m, mass 72.2 - 5.0 kg, VO 2max 57.8 - 4 ml·kg -1 ·min -1 ) completed a 45-min soccer-specific intermittent exercise protocol on a motorized treadmill. They also completed a continuous steady-rate exercise session for an identical period at the same average speed. The physiological responses to the laboratory-based soccer-specific protocol were similar to values previously observed for soccer match-play (oxygen consumption approximately 68% of maximum, heart rate 168 - 10 beats·min -1 ). No significant differences were observed in oxygen consumption, heart rate, rectal temperature or sweat production rate between the two conditions. Average minute ventilation was greater ( P ? 0.05) in intermittent exercise (81.3 - 0.2l·min -1 ) than steady-rate exercise (72.4 - 11.4l·min -1 ). The rating of perceived exertion for the session as a whole was 15 - 2 during soccer-specific intermittent exercise and 12 - 1 for continuous exercise ( P ? 0.05). The physiological strain associated with the laboratory-based soccer-specific intermittent protocol was similar to that associated with 45 min of soccer match-play, based on the variables measured, indicating the relevance of the simulation as a model of match-play work rates. Soccer-specific intermittent exercise did not increase the demands placed on the aerobic energy systems compared to continuous exercise performed at the same average speed, although the results indicate that anaerobic energy provision is more important during intermittent than during continuous exercise at the same average speed.  相似文献   

15.
It has previously been shown that the metabolic acidaemia induced by a continuous warm-up at the 'lactate threshold' is associated with a reduced accumulated oxygen deficit and decreased supramaximal performance. The aim of this study was to determine if an intermittent, high-intensity warm-up could increase oxygen uptake (VO2) without reducing the accumulated oxygen deficit, and thus improve supramaximal performance. Seven male 500 m kayak paddlers, who had represented their state, volunteered for this study. Each performed a graded exercise test to determine VO2max and threshold parameters. On subsequent days and in a random, counterbalanced order, the participants then performed a continuous or intermittent, high-intensity warm-up followed by a 2 min, all-out kayak ergometer test. The continuous warm-up consisted of 15 min of exercise at approximately 65% VO2max. The intermittent, high-intensity warm-up was similar, except that the last 5 min was replaced with five 10 s sprints at 200% VO2max, separated by 50 s of recovery at approximately 55% VO2max. Significantly greater (P < 0.05) peak power (intermittent vs continuous: 629 +/- 199 vs 601 +/- 204 W) and average power (intermittent vs continuous: 328 +/- 39.0 vs 321 +/- 42.4 W) were recorded after the intermittent warm-up. There was no significant difference between conditions for peak VO2, total VO2 or the accumulated oxygen deficit. The results of this study indicate that 2 min all-out kayak ergometer performance is significantly better after an intermittent rather than a continuous warm-up.  相似文献   

16.
In this study, we examined the effects of different work:rest durations during 20 min intermittent treadmill running and subsequent performance. Nine males (mean age 25.8 years, s = 6.8; body mass 73.9 kg, s = 8.8; stature 1.75 m, s = 0.05; VO(2max) 55.5 ml x kg(-1) x min(-1), s = 5.8) undertook repeated sprints at 120% of the speed at which VO(2max) was attained interspersed with passive recovery. The work:rest ratio was constant (1:1.5) with trials involving either short (6:9 s) or long (24:36 s) work:rest exercise protocols (total exercise time 8 min). Each trial was followed by a performance run to volitional exhaustion at the same running speed. Testing order was randomized and counterbalanced. Heart rate, oxygen consumption, respiratory exchange ratio, and blood glucose were similar between trials (P > 0.05). Blood lactate concentration was greater during the long than the short exercise protocol (P < 0.05), whereas blood pH was lower during the long than the short exercise protocol (7.28, s = 0.11 and 7.30, s = 0.03 at 20 min, respectively; P < 0.05). Perceptions of effort were greater throughout exercise for the long than the short exercise protocol (16.6, s = 1.4 and 15.1, s = 1.6 at 20 min, respectively; P < 0.05) and correlated with blood lactate (r = 0.43) and bicarbonate concentrations (r = 0.59; P < 0.05). Although blood lactate concentration at 20 min was related to performance time (r = - 0.56; P < 0.05), no differences were observed between trials for time to exhaustion (short exercise protocol: 95.8 s, s = 30.0; long exercise protocol: 92.0 s, s = 37.1) or physiological responses at exhaustion (P > 0.05). Our results demonstrate that 20 min of intermittent exercise involving a long work:rest duration elicits greater metabolic and perceptual strain than intermittent exercise undertaken with a short work:rest duration but does not affect subsequent run time to exhaustion.  相似文献   

17.
Maximal oxygen uptake VO(2max)) is considered the optimal method to assess aerobic fitness. The measurement of VO(2max), however, requires special equipment and training. Maximal exercise testing with determination of maximal power output offers a more simple approach. This study explores the relationship between [Vdot]O(2max) and maximal power output in 247 children (139 boys and 108 girls) aged 7.9-11.1 years. Maximal oxygen uptake was measured by indirect calorimetry during a maximal ergometer exercise test with an initial workload of 30 W and 15 W x min(-1) increments. Maximal power output was also measured. A sample (n = 124) was used to calculate reference equations, which were then validated using another sample (n = 123). The linear reference equation for both sexes combined was: VO(2max) (ml x min(-1)) = 96 + 10.6 x maximal power + 3.5 . body mass. Using this reference equation, estimated VO(2max) per unit of body mass (ml x min(-1) x kg(-1)) calculated from maximal power correlated closely with the direct measurement of VO(2max) (r = 0.91, P <0.001). Bland-Altman analysis gave a mean limits of agreement of 0.2+/-2.9 (ml x min(-1) x kg(-1)) (1 s). Our results suggest that maximal power output serves as a good surrogate measurement for VO(2max) in population studies of children aged 8-11 years.  相似文献   

18.
The aim of this study was to examine heart rate, blood lactate concentration and estimated energy expenditure during a competitive rugby league match. Seventeen well-trained rugby league players (age, 23.9 +/- 4.1 years; VO2max, 57.9 +/- 3.6 ml x kg(-1) x min(-1); height, 1.82 +/- 0.06 m; body mass, 90.2 +/- 9.6 kg; mean +/- s) participated in the study. Heart rate was recorded continuously throughout the match using Polar Vantage NV recordable heart rate monitors. Blood lactate samples (n = 102) were taken before the match, after the warm-up, at random stoppages in play, at half time and immediately after the match. Estimated energy expenditure during the match was calculated from the heart rate-VO2 relationship determined in laboratory tests. The mean team heart rate (n = 15) was not significantly different between halves (167 +/- 9 vs 165 +/- 11 beats x min(-1)). Mean match intensity was 81.1 +/- 5.8% VO2max. Mean match blood lactate concentration was 7.2 +/- 2.5 mmol x l(-1), with concentrations for the first half (8.4 +/- 1.8 mmol x l(-1)) being significantly higher than those for the second half (5.9 +/- 2.5 mmol x l(-1)) (P<0.05). Energy expenditure was approximately 7.9 MJ. These results demonstrate that semi-professional rugby league is a highly aerobic game with a considerable anaerobic component requiring high lactate tolerance. Training programmes should reflect these demands placed on players during competitive match-play.  相似文献   

19.
This study examined the effects of different work - rest durations during 40 min intermittent treadmill exercise and subsequent running performance. Eight males (mean +/- s: age 24.3 +/- 2.0 years, body mass 79.4 +/- 7.0 kg, height 1.77 +/- 0.05 m) undertook intermittent exercise involving repeated sprints at 120% of the speed at which maximal oxygen uptake (nu-VO2max) was attained with passive recovery between each one. The work - rest ratio was constant at 1:1.5 with trials involving short (6:9 s), medium (12:18 s) or long (24:36 s) work - rest durations. Each trial was followed by a performance run to volitional exhaustion at 150% nu-VO2max. After 40 min, mean exercise intensity was greater during the long (68.4 +/- 9.3%) than the short work - rest trial (54.9 +/- 8.1% VO2max; P < 0.05). Blood lactate concentration at 10 min was higher in the long and medium than in the short work - rest trial (6.1 +/- 0.8, 5.2 +/- 0.9, 4.5 +/- 1.3 mmol x l(-1), respectively; P < 0.05). The respiratory exchange ratio was consistently higher during the long than during the medium and short work - rest trials (P < 0.05). Plasma glucose concentration was higher in the long and medium than in the short work - rest trial after 40 min of exercise (5.6 +/- 0.1, 6.6 +/- 0.2 and 5.3 +/- 0.5 mmol x l(-1), respectively; P < 0.05). No differences were observed between trials for performance time (72.7 +/- 14.9, 63.2 +/- 13.2, 57.6 +/- 13.5 s for the short, medium and long work - rest trial, respectively; P = 0.17), although a relationship between performance time and 40 min plasma glucose was observed (P < 0.05). The results show that 40 min of intermittent exercise involving long and medium work - rest durations elicits greater physiological strain and carbohydrate utilization than the same amount of intermittent exercise undertaken with a short work-rest duration.  相似文献   

20.
The aims of this study were to describe and determine the test-retest reliability of an exercise protocol, the Loughborough Intermittent Shuttle Test (the LIST), which was designed to simulate the activity pattern characteristic of the game of soccer. The protocol consisted of two parts: Part A comprised a fixed period of variable-intensity shuttle running over 20 m; Part B consisted of continuous running, alternating every 20 m between 55% and 95% VO2max, until volitional fatigue. Seven trained games players (age 21.5+/-0.9 years, height 182+/-2 cm, body mass 80.1+/-3.6 kg, VO2max 59.0+/-1.9 ml x kg(-1) x min(-1); mean +/- s(x)) performed the test on two occasions (Trial 1 and Trial 2), at least 7 days apart, to determine the test-retest reliability of the sprint times and running capacity. The physiological and metabolic responses on both occasions were also monitored. The participants ingested water ad libitum during the first trial, and were then prescribed the same amount of water during the second trial. The 15 m sprint times during Trials 1 and 2 averaged 2.42+/-0.04 s and 2.43+/-0.04 s, respectively. Run time during Part B was 6.3+/-2.0 min for Trial 1 and 6.1+/-1.3 min for Trial 2. The 95% limits of agreement for sprint times and run times during Part B were -0.14 to 0.12 s and -3.19 to 2.16 min respectively. There were no differences between trials for heart rate, rating of perceived exertion, body mass change during exercise, or blood lactate and glucose concentrations during the test. Thus, we conclude that the sprint times and the Part B run times were reproducible within the limits previously stated. In addition, the activity pattern and the physiological and metabolic responses closely simulated the match demands of soccer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号