首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
新版高一《数学》下册第五章平面向量第三节“实数与向量的积”一节中 ,介绍了平面向量基本定理 :如果e1、e2 是同一平面内的两个不共线向量 ,那么对于这一平面内的任何一个向量 a ,有且只有一对实数λ1、λ2 ,使 a=λ1e1+λ2 e2 (此时 ,e1、e2 叫该平面内所有向量的一组基底 ) .         图 1这个定理的证明可从以下两个方面考虑 :(1)任给两个不共线向量e1、e2 ,则可表示出向量 =λ1e1+λ2 e2 (λ1、λ2 ∈R) ;(2 )对于平面内的任一向量 a ,都可以用该平面内的不共线向量e1、e2 来表示 .对于(1) ,由实数与向量…  相似文献   

2.
要学会操作     
数学一册(下)513实数与向量的积中的2.平面向量基本定理:如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1、λ2,使a=λ1e1 λ2e2.一、定理的理解1.实数对(λ1,λ2)的存在性和惟一性:平面内任一向量a均可用给定的一组基底e1,e2线性表示成a=λ1e1 λ2e2,且这种表示是惟一的.2.基底的多样性:平面内任意一组不共线的两个向量都可作为一组基底.3.几何意义:平面内任一向量都可沿两个不平行的方向分解为两个向量的和,且分解是惟一的.二、定理的延伸与拓展1.平面内任一直线型图形,根据平面向量基本定理,…  相似文献   

3.
平面向量基本定理:如果e1,e2是同一平面内两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.这是一个重要的定理,它反映了平面向量分解的唯一性,利用此唯一性可解决求相交线交成线段比的问题.这类题的关键是:首先选择恰当的基底,再将同一向量用两种不同方法表示,由平面向量基本定理得出方程组解出.例1求证:平行四边形ABCD的对角线互相平分.图1证明:如图1,设AB=a,AD=b,AC与BD相交于O,AO=λAC=λ(a+b),BO=μBD=μ(a-b),则b=AB=AO-BO=λ(a+b)-μ(a-b)=(λ-μ)a+(λ+μ)b由平面向量基本定理知…  相似文献   

4.
平面向量基本定理 (高中《数学》第一册(下 )第 1 0 6页 ) :如果 e1 ,e2 是同一平面内的两个不共线向量 ,那么对于该平面内的任一向量 a,有且只有一对实数 λ1 ,λ2 ,使 a=λ1 e1+λ2 e2 .(证略 )1 对“定理”的理解( 1 )实数对 ( λ1 ,λ2 )的存在性和惟一性 :平面内任一向量 a均可用给定的一组基底 e1 ,e2 线性表示成 a=λ1 e1 +λ2 e2 ,且这种表示是惟一的 ,其几何意义是任一向量都可沿两个不平行的方向分解为两个向量的和 ,且分解是惟一的 .( 2 )基底的不惟一性 :平面内任意两个向量 ,只要不共线 ,便可作为平面内全体向量的一组基底 .(…  相似文献   

5.
平面向量基本定理:如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1、λ2,使α=λ1e1+λ2e2.这个定理揭示了平面向量的基本  相似文献   

6.
<正>用向量法证明几何问题(未知坐标)时,选用哪两个向量作为基底较合理?一、定理再现如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,存在一对实数λ1,λ2,使a=λ1 e1+λ2 e2。二、定理的认识平面向量基本定理是向量理论中最重要的定理,是向量得以用数量进行计算的桥梁和纽带,是向量理论中的里程碑和标  相似文献   

7.
<正>平面向量基本定理如果e_1、e_2是同一平面内不共线的两个向量,那么对于这个平面内的任一个向量a,有且只有一对实数λ_1、λ_2,使a=λ_1e_1+λ_2e_2.不共线的向量e_1、e_2叫做表示这一平面内的所有向量的一组基底.那么,在具体操作中,怎样用e_1、e_2表示a呢?也就是如何确定λ_1、λ_2的值呢?有以下三种基本方法.一、三角形法则或平行四边形法则  相似文献   

8.
新版高一<数学>(下册)第五章第三节<实数与向量的积>中,介绍了平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任何一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2(此时,e1,e2叫做表示该平面内所有向量的一组基底).  相似文献   

9.
人教A版必修四第94页介绍了平面向量基本定理:如果e1、e2是同一平面内的两个不共线向量,那么对于一平面内的任意向量e1、e2a,有且只有一对实数λ1、λ2,使a=λ1e1+λ2e2.平面向量基本定理指出,平面内任何向量都可以沿两个不共线的方向分解为  相似文献   

10.
本文介绍一个结构简单但应用广泛的不等式。定理 设a >0 ,b >0 ,n∈N ,则an + 1/bn≥ (n + 1 )a -nb ( )当且仅当a =b时 ,等号成立。证明  ( ) an + 1≥ (n + 1 )abn-nbn + 1 an + 1+nbn+ 1-(n + 1 )abn≥ 0 (an+ 1-bn + 1) + (n + 1 )bn·(b -a)≥ 0 (a -b) [an+an - 1b +an- 2 b2 +… +abn- 1+bn-(n + 1 )bn]≥ 0①若a >b >0 ,则an+an - 1b +an - 2 b2 +… +abn - 1+bn-(n + 1 )bn>(n + 1 )bn-(n + 1 )bn=0 ,从而①式成立。若 0 <a <b,则a…  相似文献   

11.
向量共线的充要条件是由实数与向量的积推出的,它是平面向量的基本定理的一种特殊情况,具体内容为:向量b与非零向量a共线的充要条件是有且只有一个实数λ,使得b=λa, 由于零向量与任一向量共线,故上述定理又可叙述为向量b与向量a共线的充要条件是:存在不全为0的实数λ1, λ2, 使得λ1a+λ2b=0, 它的逆否命题为:若向量a, b不共线,(a≠0, b≠0),且λ1a+λ2b=0, 则λ1=λ2=0,这些结论可用来证明几何中三点共线与两直线平行等问题.举例说明如下:  相似文献   

12.
新版高一数学下册第五章《平面向量》第三节《3.2实数与向量的积》一节中,介绍了平面向量基本定理:如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任何一个向量a,有且只有一对实数λ1,λ2,a=λ1e1+λ2e2.(此时,e1、e2叫该平面内所有向量的  相似文献   

13.
人教社2000版教材第I册(下)P106有平面向量基本定理:如果(→e)1、(→e)2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量(→a),有且只有一对实数λ1、λ2使(→a)=λ1 (→e)1 λ2·(→e)2((→e)1、(→e)2叫表示这一平面内所有向量的一组基底).  相似文献   

14.
我们知道,根据平面向量基本定理,在一个平面内,给定2个不共线的向量i、j,任何一个向量→↑OP都可以用这2个向量表示成→↑OP=λ1i+λ2j.若i⊥j,则可以i、j作为基底,建立平面直角坐标系,  相似文献   

15.
高中教材第一册 (上 )第 1 4 0页第 2题第 4小题 :已知数列 an 、 bn 的通项公式分别为an =an+2 ,bn=bn+1 (a ,b是常数 ) ,且a>b ,求这两个数列中序号与数值均相同的项的个数 .这是求两个等差数列的公共项问题 ,但这道题要求序号与数值均相同 ,通常数列的公共项问题只要求数值相同 ,并不要求序号相同 .现举两例说明数列公共项问题的基本解法 .例 1 数列 an 与 bn 的通项公式分别为an =2 n,bn =3n +2 ,它们的公共项由小到大排成的数列是 cn ,求 cn 的通项公式 .解 设am =bp,则 2 m =3 p+2 ,am+1 =2 …  相似文献   

16.
柯西不等式是一个十分重要的不等式定理 ,从近年来国内外各级竞赛中不难看出 ,许多涉及不等式的赛题 ,若能运用柯西不等式进行求解 ,便可获得较为简明的解法 .一、基础知识1 柯西 (Cauchy)不等式定理 设a1、a2 、…、an,b1、b2 、…、bn 均是实数 ,则(a1b1 a2 b2 … anbn) 2≤ (a12 a2 2 … an2 ) (b12 b2 2 … bn2 ) ,等号当且仅当ai=λbi(λ为常数 ,i=1 ,2 ,… ,n)时成立 .这个命题的证明在一般的竞赛教程中都可以查找到 ,这里从略 .2 柯西不等式的推论推论 1 设a1、a2 、…、an,b1…  相似文献   

17.
<正>一、利用平面向量基本定理解题的根本是"建基设系"所谓建基设系就是利用平面向量基本定理,即如果e_1、e_2是同一平面的两个不共线向量,则对这个平面内的任意向量a,有且只有一对实数λ_1、λ_2,使a=λ_1e_1+λ_2e_2。  相似文献   

18.
沈凯 《中等数学》2003,(1):15-16
用向量解决平面几何问题 ,首先是在图形中选出一对不平行的有向线段 ,设为a、b ,则平面内的其他有向线段均可用a、b惟一表示 ,即AB =pa +qb .有序实数对 (p ,q)可看成AB的“坐标” ,这里近似于复数 ,但它的优点在于直观性 ,a、b可以是不互相垂直 ,同时起始点可以任意选定 ,从而对于解决几何问题有着较大的自由度 .本文仅就两个方面说明它的价值 .  一、证明三点共线定理 1 A、B、C为平面上不重合的三点 ,则A、B、C三点共线 AB∥AC 存在实数λ,使AB =λAC .定理 2 a∥\bλa + μb =0 λ + μ =0 .图 …  相似文献   

19.
新版高一数学 (下册 )第五章第三节《实数与向量的积》中 ,介绍了平面两个向量共线定理 :向量 b与非零向量 a共线的充要条件是有且只有一个实数λ,使得b =λa.由此 ,可以得到下列推论 :推论 1   OA、OB是平面内两不共线向量 ,向量OP满足 :OP =a OA +b OB( a,b∈ R) ,则 A、P、B三点共线的充要条件是 a +b =1.证明 :( 1)若 a +b=1,则 A P =OP - OA =( a -1) OA +b OB =b( OB - OA ) =b AB,故 AP与 A B共线 ,从而 A、P、B三点共线 ;( 2 )若 A、P、B三点共线 ,则存在唯一实数λ,使得AP =λAB,即 OP - OA =λ( OB - OA …  相似文献   

20.
由向量基本定理可以得到 :设OA、OB是平面内两个不共线向量 ,则A、B、C三点共线的充要条件是存在唯一的一对实数x ,y ,使得OC =xOA+yOB且x+y =1.设OA、OB、OC是空间不共面的向量 ,则A、B、C、D四点共面的充要条件是存在唯一的一组实数x、y、z ,使得OD =xOA +yOB +zOC且x +y+z =1.用好这两个充要条件 ,在证明有关问题时可省去很多证明过程 .例 1 已知OA =a ,OB =b,OC =c ,OD=d ,OE=e.又O、A、B不共线 ,如果a=3c,b =2d ,e=t(a+b) .试问 :t为何值时 ,C、D、E三…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号