首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Traditionally, recommender systems for the web deal with applications that have two dimensions, users and items. Based on access data that relate these dimensions, a recommendation model can be built and used to identify a set of N items that will be of interest to a certain user. In this paper we propose a multidimensional approach, called DaVI (Dimensions as Virtual Items), that consists in inserting contextual and background information as new user–item pairs. The main advantage of this approach is that it can be applied in combination with several existing two-dimensional recommendation algorithms. To evaluate its effectiveness, we used the DaVI approach with two different top-N recommender algorithms, Item-based Collaborative Filtering and Association Rules based, and ran an extensive set of experiments in three different real world data sets. In addition, we have also compared our approach to the previously introduced combined reduction and weight post-filtering approaches. The empirical results strongly indicate that our approach enables the application of existing two-dimensional recommendation algorithms in multidimensional data, exploiting the useful information of these data to improve the predictive ability of top-N recommender systems.  相似文献   

2.
3.
Nowadays, the increasing demand for group recommendations can be observed. In this paper we address the problem of recommendation performance for groups of users (group recommendation). We focus on the performance of very Top-N recommendations, which are important when recommending the long lasting items (only a few such items are consumed per session, e.g. movie). To improve existing group recommenders we propose a mixed hybrid recommender for groups combining content-based and collaborative strategies. The principle of proposed group recommender is to generate content and collaborative recommendations for each user, apply an aggregation strategy to solve the group conflict preferences for the content and collaborative sets separately, and finally reorder the collaborative candidates based on the content-based ones. It is based on an idea that candidates recommended by both recommendation strategies at the same time are presumably more appropriate for the group than the candidates recommended by individual strategies. The evaluation is performed by several experiments in the multimedia domain (as typical representative for group recommendations). Both, online and offline experiments were performed in order to compare real users’ satisfaction to the standard group recommenders and also, to compare performance of proposed approach to the state-of-the-art recommenders based on the MovieLens dataset. Finally, we experimented with the proposed hybrid recommender to generate the recommendation for a group of size one (i.e. single user recommendation). Obtained results, support our hypothesis that proposed mixed hybrid approach improves the precision of the recommendation for groups of users and for the single-user recommendation respectively on very Top-N recommended items.  相似文献   

4.
Fairness is fundamental to all information access systems, including recommender systems. However, the landscape of fairness definition and measurement is quite scattered with many competing definitions that are partial and often incompatible. There is much work focusing on specific – and different – notions of fairness and there exist dozens of metrics of fairness in the literature, many of them redundant and most of them incompatible. In contrast, to our knowledge, there is no formal framework that covers all possible variants of fairness and allows developers to choose the most appropriate variant depending on the particular scenario. In this paper, we aim to define a general, flexible, and parameterizable framework that covers a whole range of fairness evaluation possibilities. Instead of modeling the metrics based on an abstract definition of fairness, the distinctive feature of this study compared to the current state of the art is that we start from the metrics applied in the literature to obtain a unified model by generalization. The framework is grounded on a general work hypothesis: interpreting the space of users and items as a probabilistic sample space, two fundamental measures in information theory (Kullback–Leibler Divergence and Mutual Information) can capture the majority of possible scenarios for measuring fairness on recommender system outputs. In addition, earlier research on fairness in recommender systems could be viewed as single-sided, trying to optimize some form of equity across either user groups or provider/procurer groups, without considering the user/item space in conjunction, thereby overlooking/disregarding the interplay between user and item groups. Instead, our framework includes the notion of statistical independence between user and item groups. We finally validate our approach experimentally on both synthetic and real data according to a wide range of state-of-the-art recommendation algorithms and real-world data sets, showing that with our framework we can measure fairness in a general, uniform, and meaningful way.  相似文献   

5.
To achieve personalized recommendations, the recommender system selects the items that users may like by learning the collected user–item interaction data. However, the acquisition and use of data usually form a feedback loop, which leads to recommender systems suffering from popularity bias. To solve this problem, we propose a novel dual disentanglement of user–item interaction for recommendation with causal embedding (DDCE). Different from the existing work, our innovation is we take into account double-end popularity bias from the user-side and the item-side. Firstly, we perform a causal analysis of the reasons for user–item interaction and obtain the causal embedding representation of each part according to the analysis results. Secondly, on the item-side, we consider the influence of item attributes on popularity to improve the reliability of the item popularity. Then, on the user-side, we consider the effect of the time series when obtaining users’ interest. We model the contrastive learning task to disentangle users’ long–short-term interests, which avoids the bias of long–short-term interests overlapping, and use the attention mechanism to realize the dynamic integration of users’ long–short-term interests. Finally, we realize the disentanglement of user–item interaction reasons by decoupling user interest and item popularity. We experiment on two real-world datasets (Douban Movie and KuaiRec) to verify the significance of DDCE, the average improvement of DDCE in three evaluation metrics (NDCG, HR, and Recall) compared to the state-of-the-art model are 5.1106% and 4.1277% (MF as the backbone), 3.8256% and 3.2790% (LightGCN as the backbone), respectively.  相似文献   

6.
A recommender system has an obvious appeal in an environment where the amount of on-line information vastly outstrips any individual’s capability to survey. Music recommendation is considered a popular application area. In order to make personalized recommendations, many collaborative music recommender systems (CMRS) focus on capturing precise similarities among users or items based on user historical ratings. Despite the valuable information from audio features of music itself, however, few studies have investigated how to utilize information extracted directly from music for personalized recommendation in CMRS. In this paper, we describe a CMRS based on our proposed item-based probabilistic model, where items are classified into groups and predictions are made for users considering the Gaussian distribution of user ratings. In addition, this model has been extended for improved recommendation performance by utilizing audio features that help alleviate three well-known problems associated with data sparseness in collaborative recommender systems: user bias, non-association, and cold start problems in capturing accurate similarities among items. Experimental results based on two real-world data sets lead us to believe that content information is crucial in achieving better personalized recommendation beyond user ratings. We further show how primitive audio features can be combined into aggregate features for the proposed CRMS and analyze their influences on recommendation performance. Although this model was developed originally for music collaborative recommendation based on audio features, our experiment with the movie data set demonstrates that it can be applied to other domains.  相似文献   

7.
Popularity bias is an undesirable phenomenon associated with recommendation algorithms where popular items tend to be suggested over long-tail ones, even if the latter would be of reasonable interest for individuals. Such intrinsic tendencies of the recommenders may lead to producing ranked lists, in which items are not equally covered along the popularity tail. Although some recent studies aim to detect such biases of traditional algorithms and treat their effects on recommendations, the concept of popularity bias remains elusive for group recommender systems. Therefore, in this study, we focus on investigating popularity bias from the view of group recommender systems, which aggregate individual preferences to achieve recommendations for groups of users. We analyze various state-of-the-art aggregation techniques utilized in group recommender systems regarding their bias towards popular items. To counteract possible popularity issues in group recommendations, we adapt a traditional re-ranking approach that weighs items inversely proportional to their popularity within a group. Also, we propose a novel popularity bias mitigation procedure that re-ranks items by incorporating their popularity level and estimated group ratings in two distinct strategies. The first one aims to penalize popular items during the aggregation process highly and avoids bias better, while the second one puts more emphasis on group ratings than popularity and achieves a more balanced performance regarding conflicting goals of mitigating bias and boosting accuracy. Experiments performed on four real-world benchmark datasets demonstrate that both strategies are more efficient than the adapted approach, and empowering aggregation techniques with one of these strategies significantly decreases their bias towards popular items while maintaining reasonable ranking accuracy.  相似文献   

8.
This paper presents a novel genetic-based recommender system (BLIGA) that depends on the semantic information and historical rating data. The main contribution of this research lies in evaluating the possible recommendation lists instead of evaluating items then forming the recommendation list. BLIGA utilizes the genetic algorithm to find the best list of items to the active user. Thus, each individual represents a candidate recommendation list. BLIGA hierarchically evaluates the individuals using three fitness functions. The first function uses semantic information about items to estimates the strength of the semantic similarity between items. The second function estimates the similarity in satisfaction level between users. The third function depends on the predicted ratings to select the best recommendation list.BLIGA results have been compared against recommendation results from alternative collaborative filtering methods. The results demonstrate the superiority of BLIGA and its capability to achieve more accurate predictions than the alternative methods regardless of the number of K-neighbors.  相似文献   

9.
Recommender systems learn from historical users’ feedback that is often non-uniformly distributed across items. As a consequence, these systems may end up suggesting popular items more than niche items progressively, even when the latter would be of interest for users. This can hamper several core qualities of the recommended lists (e.g., novelty, coverage, diversity), impacting on the future success of the underlying platform itself. In this paper, we formalize two novel metrics that quantify how much a recommender system equally treats items along the popularity tail. The first one encourages equal probability of being recommended across items, while the second one encourages true positive rates for items to be equal. We characterize the recommendations of representative algorithms by means of the proposed metrics, and we show that the item probability of being recommended and the item true positive rate are biased against the item popularity. To promote a more equal treatment of items along the popularity tail, we propose an in-processing approach aimed at minimizing the biased correlation between user-item relevance and item popularity. Extensive experiments show that, with small losses in accuracy, our popularity-mitigation approach leads to important gains in beyond-accuracy recommendation quality.  相似文献   

10.
General recommenders and sequential recommenders are two modeling paradigms of recommender. The main focus of a general recommender is to identify long-term user preferences, while the user’s sequential behaviors are ignored and sequential recommenders try to capture short-term user preferences by exploring item-to-item relations, failing to consider general user preferences. Recently, better performance improvement is reported by combining these two types of recommenders. However, most of the previous works typically treat each item separately and assume that each user–item interaction in a sequence is independent. This may be a too simplistic assumption, since there may be a particular purpose behind buying the successive item in a sequence. In fact, a user makes a decision through two sequential processes, i.e., start shopping with a particular intention and then select a specific item which satisfies her/his preferences under this intention. Moreover, different users usually have different purposes and preferences, and the same user may have various intentions. Thus, different users may click on the same items with an attention on a different purpose. Therefore, a user’s behavior pattern is not completely exploited in most of the current methods and they neglect the distinction between users’ purposes and their preferences. To alleviate those problems, we propose a novel method named, CAN, which takes both users’ purposes and preferences into account for the next-item recommendation. We propose to use Purpose-Specific Attention Unit (PSAU) in order to discriminately learn the representations of user purpose and preference. The experimental results on real-world datasets demonstrate the advantages of our approach over the state-of-the-art methods.  相似文献   

11.
Session-based recommendation aims to predict items that a user will interact with based on historical behaviors in anonymous sessions. It has long faced two challenges: (1) the dynamic change of user intents which makes user preferences towards items change over time; (2) the uncertainty of user behaviors which adds noise to hinder precise preference learning. They jointly preclude recommender system from capturing real intents of users. Existing methods have not properly solved these problems since they either ignore many useful factors like the temporal information when building item embeddings, or do not explicitly filter out noisy clicks in sessions. To tackle above issues, we propose a novel Dynamic Intent-aware Iterative Denoising Network (DIDN) for session-based recommendation. Specifically, to model the dynamic intents of users, we present a dynamic intent-aware module that incorporates item-aware, user-aware and temporal-aware information to learn dynamic item embeddings. A novel iterative denoising module is then devised to explicitly filter out noisy clicks within a session. In addition, we mine collaborative information to further enrich the session semantics. Extensive experimental results on three real-world datasets demonstrate the effectiveness of the proposed DIDN. Specifically, DIDN obtains improvements over the best baselines by 1.66%, 1.75%, and 7.76% in terms of P@20 and 1.70%, 2.20%, and 10.48% in terms of MRR@20 on all datasets.  相似文献   

12.
Previous federated recommender systems are based on traditional matrix factorization, which can improve personalized service but are vulnerable to gradient inference attacks. Most of them adopt model averaging to fit the data heterogeneity of federated recommender systems, requiring more training costs. To address privacy and efficiency, we propose an efficient federated item similarity model for the heterogeneous recommendation, called FedIS, which can train a global item-based collaborative filtering model to eliminate user feature dependencies. Specifically, we extend the neural item similarity model to the federated model, where each client only locally optimizes the shared item feature matrix. We then propose a fast-convergent federated aggregation method inspired by meta-learning to address heterogeneous user updates and accelerate the convergence of global training. Furthermore, we propose a two-stage perturbation method to protect both local training and transmission while reducing communication costs. Finally, extensive experiments on four real-world datasets validate that FedIS can provide more competitive performance on federated recommendations. Our proposed method also shows significant training efficiency with less performance degradation.  相似文献   

13.
Sequential recommendation models a user’s historical sequence to predict future items. Existing studies utilize deep learning methods and contrastive learning for data augmentation to alleviate data sparsity. However, these existing methods cannot learn accurate high-quality item representations while augmenting data. In addition, they usually ignore data noise and user cold-start issues. To solve the above issues, we investigate the possibility of Generative Adversarial Network (GAN) with contrastive learning for sequential recommendation to balance data sparsity and noise. Specifically, we propose a new framework, Enhanced Contrastive Learning with Generative Adversarial Network for Sequential Recommendation (ECGAN-Rec), which models the training process as a GAN and recommendation task as the main task of the discriminator. We design a sequence augmentation module and a contrastive GAN module to implement both data-level and model-level augmentations. In addition, the contrastive GAN learns more accurate high-quality item representations to alleviate data noise after data augmentation. Furthermore, we propose an enhanced Transformer recommender based on GAN to optimize the performance of the model. Experimental results on three open datasets validate the efficiency and effectiveness of the proposed model and the ability of the model to balance data noise and data sparsity. Specifically, the improvement of ECGAN-Rec in two evaluation metrics (HR@N and NDCG@N) compared to the state-of-the-art model performance on the Beauty, Sports and Yelp datasets are 34.95%, 36.68%, and 13.66%, respectively. Our implemented model is available via https://github.com/nishawn/ECGANRec-master.  相似文献   

14.
Modeling user profiles is a necessary step for most information filtering systems – such as recommender systems – to provide personalized recommendations. However, most of them work with users or items as vectors, by applying different types of mathematical operations between them and neglecting sequential or content-based information. Hence, in this paper we study how to propose an adaptive mechanism to obtain user sequences using different sources of information, allowing the generation of hybrid recommendations as a seamless, transparent technique from the system viewpoint. As a proof of concept, we develop the Longest Common Subsequence (LCS) algorithm as a similarity metric to compare the user sequences, where, in the process of adapting this algorithm to recommendation, we include different parameters to control the efficiency by reducing the information used in the algorithm (preference filter), to decide when a neighbor is considered useful enough to be included in the process (confidence filter), to identify whether two interactions are equivalent (δ-matching threshold), and to normalize the length of the LCS in a bounded interval (normalization functions). These parameters can be extended to work with any type of sequential algorithm.We evaluate our approach with several state-of-the-art recommendation algorithms using different evaluation metrics measuring the accuracy, diversity, and novelty of the recommendations, and analyze the impact of the proposed parameters. We have found that our approach offers a competitive performance, outperforming content, collaborative, and hybrid baselines, and producing positive results when either content- or rating-based information is exploited.  相似文献   

15.
Most of the existing GNN-based recommender system models focus on learning users’ personalized preferences from these (explicit/implicit) positive feedback to achieve personalized recommendations. However, in the real-world recommender system, the users’ feedback behavior also includes negative feedback behavior (e.g., click dislike button), which also reflects users’ personalized preferences. How to utilize negative feedback is a challenging research problem. In this paper, we first qualitatively and quantitatively analyze the three kinds of negative feedback that widely existed in real-world recommender systems and investigate the role of negative feedback in recommender systems. We found that it is different from what we expected — not all negative items are ranked low, and some negative items are even ranked high in the overall items. Then, we propose a novel Signed Graph Neural Network Recommendation model (SiGRec) to encode the users’ negative feedback behavior. Our SiGRec can learn positive and negative embeddings of users and items via positive and negative graph neural network encoders, respectively. Besides, we also define a new Sign Cosine (SiC) loss function to adaptively mine the information of negative feedback for different types of negative feedback. Extensive experiments on four datasets demonstrate the proposed model outperforms several existing models. Specifically, on the Zhihu dataset, SiGRec outperforms the unsigned GNN model (i.e., LightGCN), 27.58% 29.81%, and 31.21% in P@20, R@20, and nDCG@20, respectively. We hope our work can open the door to further exploring the negative feedback in recommendations.  相似文献   

16.
Integrating useful input information is essential to provide efficient recommendations to users. In this work, we focus on improving items ratings prediction by merging both multiple contexts and multiple criteria based research directions which were addressed separately in most existent literature. Throughout this article, Criteria refer to the items attributes, while Context denotes the circumstances in which the user uses an item. Our goal is to capture more fine grained preferences to improve items recommendation quality using users’ multiple criteria ratings under specific contextual situations. Therefore, we examine the recommenders’ data from the graph theory based perspective by representing three types of entities (users, contextual situations and criteria) as well as their relationships as a tripartite graph. Upon the assumption that contextually similar users tend to have similar interests for similar item criteria, we perform a high-order co-clustering on the tripartite graph for simultaneously partitioning the graph entities representing users in similar contextual situations and their evaluated item criteria. To predict cluster-based multi-criteria ratings, we introduce an improved rating prediction method that considers the dependency between users and their contextual situations, and also takes into account the correlation between criteria in the prediction process. The predicted multi-criteria ratings are finally aggregated into a single representative output corresponding to an overall item rating. To guide our investigation, we create a research hypothesis to provide insights about the tripartite graph partitioning and design clear and justified preliminary experiments including quantitative and qualitative analyzes to validate it. Further thorough experiments on the two available context-aware multi-criteria datasets, TripAdvisor and Educational, demonstrate that our proposal exhibits substantial improvements over alternative recommendations approaches.  相似文献   

17.
The matrix factorization model based on user-item rating data has been widely studied and applied in recommender systems. However, data sparsity, the cold-start problem, and poor explainability have restricted its performance. Textual reviews usually contain rich information about items’ features and users’ sentiments and preferences, which can solve the problem of insufficient information from only user ratings. However, most recommendation algorithms that take sentiment analysis of review texts into account are either fine- or coarse-grained, but not both, leading to uncertain accuracy and comprehensiveness regarding user preference. This study proposes a deep learning recommendation model (i.e., DeepCGSR) that integrates textual review sentiments and the rating matrix. DeepCGSR uses the review sets of users and items as a corpus to perform cross-grained sentiment analysis by combining fine- and coarse-grained levels to extract sentiment feature vectors for users and items. Deep learning technology is used to map between the extracted feature vector and latent factor through the rating-based matrix factorization model and obtain deep, nonlinear features to predict the user's rating of an item. Iterative experiments on e-commerce datasets from Amazon show that DeepCGSR consistently outperforms the recommendation models LFM, SVD++, DeepCoNN, TOPICMF, and NARRE. Overall, comparing with other recommendation models, the DeepCGSR model demonstrated improved evaluation results by 14.113% over LFM, 13.786% over SVD++, 9.920% over TOPICMF, 5.122% over DeepCoNN, and 2.765% over NARRE. Meanwhile, the DeepCGSR has great potential in fixing the overfitting and cold-start problems. Built upon previous studies and findings, the DeepCGSR is the state of the art, moving the design and development of the recommendation algorithms forward with improved recommendation accuracy.  相似文献   

18.
Recently, the high popularity of social networks accelerates the development of item recommendation. Integrating the influence diffusion of social networks in recommendation systems is a challenging task since topic distribution over users and items is latent and user topic interest may change over time. In this paper, we propose a dynamic generative model for item recommendation which captures the potential influence logs based on the community-level topic influence diffusion to infer the latent topic distribution over users and items. Our model enables tracking the time-varying distributions of topic interest and topic popularity over communities in social networks. A collapsed Gibbs sampling algorithm is proposed to train the model, and an improved diversification algorithm is proposed to obtain item diversified recommendation list. Extensive experiments are conducted to evaluate the effectiveness and efficiency of our method. The results validate our approach and show the superiority of our method compared with state-of-the-art diversified recommendation methods.  相似文献   

19.
In collaborative filtering recommender systems recommendations can be made to groups of users. There are four basic stages in the collaborative filtering algorithms where the group’s users’ data can be aggregated to the data of the group of users: similarity metric, establishing the neighborhood, prediction phase, determination of recommended items. In this paper we perform aggregation experiments in each of the four stages and two fundamental conclusions are reached: (1) the system accuracy does not vary significantly according to the stage where the aggregation is performed, (2) the system performance improves notably when the aggregation is performed in an earlier stage of the collaborative filtering process. This paper provides a group recommendation similarity metric and demonstrates the convenience of tackling the aggregation of the group’s users in the actual similarity metric of the collaborative filtering process.  相似文献   

20.
Social applications foster the involvement of end users in Web content creation, as a result of which a new source of vast amounts of data about users and their likes and dislikes has become available. Having access to users’ contributions to social sites and gaining insights into the consumers’ needs is of the utmost importance for marketing decision making in general, and to advertisement recommendation in particular. By analyzing this information, advertisement recommendation systems can attain a better understanding of the users’ interests and preferences, thus allowing these solutions to provide more precise ad suggestions. However, in addition to the already complex challenges that hamper the performance of recommender systems (i.e., data sparsity, cold-start, diversity, accuracy and scalability), new issues that should be considered have also emerged from the need to deal with heterogeneous data gathered from disparate sources. The technologies surrounding Linked Data and the Semantic Web have proved effective for knowledge management and data integration. In this work, an ontology-based advertisement recommendation system that leverages the data produced by users in social networking sites is proposed, and this approach is substantiated by a shared ontology model with which to represent both users’ profiles and the content of advertisements. Both users and advertisement are represented by means of vectors generated using natural language processing techniques, which collect ontological entities from textual content. The ad recommender framework has been extensively validated in a simulated environment, obtaining an aggregated f-measure of 79.2% and a Mean Average Precision at 3 (MAP@3) of 85.6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号