首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Over the past decade, repeated calls have been made to incorporate more active teaching and learning in undergraduate biology courses. The emphasis on inquiry-based teaching is especially important in laboratory courses, as these are the courses in which students are applying the process of science. To determine the current state of research on inquiry-based teaching in undergraduate biology laboratory courses, we reviewed the recent published literature on inquiry-based exercises. The majority of studies in our data set were in the subdisciplines of biochemistry, cell biology, developmental biology, genetics, and molecular biology. In addition, most exercises were guided inquiry, rather than open ended or research based. Almost 75% of the studies included assessment data, with two-thirds of these studies including multiple types of assessment data. However, few exercises were assessed in multiple courses or at multiple institutions. Furthermore, assessments were rarely based on published instruments. Although the results of the studies in our data set show a positive effect of inquiry-based teaching in biology laboratory courses on student learning gains, research that uses the same instrument across a range of courses and institutions is needed to determine whether these results can be generalized.  相似文献   

2.
This study explored the use of wikis in a science inquiry-based project conducted with Primary 6 students (aged 11–12). It used an online wiki-based platform called PBworks and addressed the following research questions: (1) What are students’ attitudes toward learning with wikis? (2) What are students’ interactions in online group collaboration with wikis? (3) What have students learned with wikis in a science inquiry-based project in a primary school context? Analyses of the quantitative and qualitative data showed that with respect to the first research question, the students held positive attitudes toward the platform at the end of the study. With respect to the second research question, the students actively engaged in various forms of learning-related interactions using the platform that extended to more meaningful offline interactions. With respect to the third research question, the students developed Internet search skills, collaborative problem solving competencies, and critical inquiry abilities. It is concluded that a well-planned wiki-based learning experience, framed within an inquiry project-based approach facilitated by students’ online collaborative knowledge construction, is conducive to the learning and teaching of science inquiry-based projects in primary school.  相似文献   

3.
We determined short- and long-term correlates of a revised introductory biology curriculum on understanding of biology as a process of inquiry and learning of content. In the original curriculum students completed two traditional lecture-based introductory courses. In the revised curriculum students completed two new learner-centered, inquiry-based courses. The new courses differed significantly from those of the original curriculum through emphases on critical thinking, collaborative work, and/or inquiry-based activities. Assessments were administered to compare student understanding of the process of biological science and content knowledge in the two curricula. More seniors who completed the revised curriculum had high-level profiles on the Views About Science Survey for Biology compared with seniors who completed the original curriculum. Also as seniors, students who completed the revised curriculum scored higher on the standardized Biology Field Test. Our results showed that an intense inquiry-based learner-centered learning experience early in the biology curriculum was associated with long-term improvements in learning. We propose that students learned to learn science in the new courses which, in turn, influenced their learning in subsequent courses. Studies that determine causal effects of learner-centered inquiry-based approaches, rather than correlative relationships, are needed to test our proposed explanation.  相似文献   

4.
The purpose of this paper is twofold: to describe robust rationales for integrating inquiry-based learning into undergraduate science education, and to propose that digital libraries are potentially powerful technological tools that can support inquiry-based learning goals in undergraduate science courses. Overviews of constructivism and situated cognition are provided with regard to how these two theoretical perspectives have influenced current science education reform movements, especially those that involve inquiry-based learning. The role that digital libraries can play in inquiry-based learning environments is discussed. Finally, the importance of alignment among critical pedagogical dimensions of an inquiry-based pedagogical framework is stressed in the paper, and an example of how this can be done is presented using earth science education as a context.  相似文献   

5.
For undergraduate students to achieve science literacy, they must first develop information literacy skils. These skills align with Information Literacy Standards and include determining appropriate databases, distinguishing among resource types, and citing resources ethically. To effectively improve information literacy and science literacy, we must identify how students interact with authentic scientific texts. In this case study, we addressed this aim by embedding a science librarian into a science writing course, where students wrote a literature review on a research topic of their choice. Library instruction was further integrated through the use of an online guide and outside assistance. To evaluate the evolution of information literacy in our students and provide evidence of student practices, we used task-scaffolded writing assessments, a reflection, and surveys. We found that students improved their ability and confidence in finding research articles using discipline-specific databases as well as their ability to distinguish primary from secondary research articles. We also identified ways students improperly used and cited resources in their writing assignments. While our results reveal a better understanding of how students find and approach scientific research articles, additional research is needed to develop effective strategies to improve long-term information literacy in the sciences.  相似文献   

6.
Recruiting and preparing STEM majors for teaching has become one of the major efforts at improving mathematics and science teacher quality at secondary level. One question is whether STEM majors who have not had the chance to experience active learning in mathematics and science classes as secondary students themselves know what inquiry pedagogy is. Secondly, it is unclear whether those who experienced inquiry in their college introductory discipline courses will be able to utilize the pedagogy in teaching secondary content. We address these questions through studying an undergraduate research methods course designed to improve STEM majors’ capacity for delivering inquiry-based mathematics and science lesson. Analysis of data from pre-and-post course surveys and students’ written research reports including students’ reflection on their inquiry projects suggests that offering future STEM teachers opportunities to conduct inquiry and reflect explicitly on how inquiry can be used to teach secondary content is important and beneficial.  相似文献   

7.
There is a tendency for lecture-based instruction in large introductory science courses to strongly focus on the delivery of discipline-specific technical terminology and fundamental concepts, sometimes to the detriment of opportunities for application of learned knowledge in evidence-based critical-thinking activities. We sought to improve student performance on evidence-based critical-thinking tasks through the implementation of peer learning and problem-based learning tutorial activities. Small-group discussions and associated learning activities were used to facilitate deeper learning through the application of new knowledge. Student performance was assessed using critical-thinking essay assignments and a final course exam, and student satisfaction with tutorial activities was monitored using online surveys. Overall, students expressed satisfaction with the small-group-discussion-based tutorial activities (mean score 7.5/10). Improved critical thinking was evidenced by improved student performance on essay assignments during the semester, as well as a 25% increase in mean student scores on the final course exam compared to previous years. These results demonstrate that repeated knowledge application practice can improve student learning in large introductory-level science courses.  相似文献   

8.
Singapore Polytechnic offers a tertiary education to O and A level school-leavers leading to more than 20 full-time and part-time diplomas in business, computing, engineering, maritime studies, multimedia, optometry, and technology. The mathematics and science department at Singapore Polytechnic supports the need for a sound foundation in mathematics by offering modules in engineering mathematics for students of the engineering courses. The mathematics modules range from a one-year to a two-and-a-half-year module depending on students entry abilities and the extent of mathematics knowledge needed in the respective courses. This article describes some of the initiatives taken in conjunction with the national objective of having 60% of the population achieve a tertiary qualification to support the knowledge-based economy. These initiatives include programs designed for the varying abilities of students and the incorporation of appropriate use of information technology to make students learning experiences more varied and interesting. These initiatives have brought faculty to the realization that they too are involved in a process of lifelong learning.  相似文献   

9.
Incorporation of mathematics into biology curricula is critical to underscore for undergraduate students the relevance of mathematics to most fields of biology and the usefulness of developing quantitative process skills demanded in modern biology. At our institution, we have made significant changes to better integrate mathematics into the undergraduate biology curriculum. The curricular revision included changes in the suggested course sequence, addition of statistics and precalculus as prerequisites to core science courses, and incorporating interdisciplinary (math-biology) learning activities in genetics and zoology courses. In this article, we describe the activities developed for these two courses and the assessment tools used to measure the learning that took place with respect to biology and statistics. We distinguished the effectiveness of these learning opportunities in helping students improve their understanding of the math and statistical concepts addressed and, more importantly, their ability to apply them to solve a biological problem. We also identified areas that need emphasis in both biology and mathematics courses. In light of our observations, we recommend best practices that biology and mathematics academic departments can implement to train undergraduates for the demands of modern biology.  相似文献   

10.
The skill set required of biomedical researchers continues to grow and evolve as biology matures as a natural science. Science necessitates creative yet critical thinking, persuasive communication skills, purposeful use of time, and adeptness at the laboratory bench. Teaching these skills can be effectively accomplished in an inquiry-based, active-learning environment at a primarily undergraduate institution. Cell Biology Techniques, an upper-level cell biology laboratory course at St. John Fisher College, features two independent projects that take advantage of the biology of the nematode Caenorhabditis elegans, a premier yet simple model organism. First, students perform a miniature epigenetic screen for novel phenotypes using RNA interference. The results of this screen combined with literature research direct students toward a singe gene that they attempt to subclone in the second project. The biology of the chosen gene/protein also becomes an individualized focal point with respect to the content of the laboratory. Progress toward course goals is evaluated using written, oral, and group-produced assignments, including a concept map. Pre- and postassessment indicates a significant increase in the understanding of broad concepts in cell biological research.  相似文献   

11.
The Laboratory     
Creative thinking skills are essential for today's workplace. Three faculty members from different professional schools (business, higher education administration, teacher education) examined student responses to the creative assignments in their courses. The assignments exemplify the following criteria: invited taking risks, encouraged innovative thinking, stressed connecting, demonstrated synthesis and transformation of course content. The study examined student responses to creative projects via a Likert-scale survey, open-ended narrative responses, and then scores on a rubric on creativity and integrative learning. Fifty-seven students were surveyed across all three courses. Overall, results indicate that students not only found these assignments worthwhile but also found that they furthered their learning of course content. Implications for practice are included.  相似文献   

12.
Active learning and research-oriented activities have been increasingly used in smaller, specialized science courses. Application of this type of scientific teaching to large enrollment introductory courses has been, however, a major challenge. The general microbiology lecture/laboratory course described has been designed to incorporate published active-learning methods. Three major case studies are used as platforms for active learning. Themes from case studies are integrated into lectures and laboratory experiments, and in class and online discussions and assignments. Students are stimulated to apply facts to problem-solving and to learn research skills such as data analysis, writing, and working in teams. This course is feasible only because of its organizational framework that makes use of teaching teams (made up of faculty, graduate assistants, and undergraduate assistants) and Web-based technology. Technology is a mode of communication, but also a system of course management. The relevance of this model to other biology courses led to assessment and evaluation, including an analysis of student responses to the new course, class performance, a university course evaluation, and retention of course learning. The results are indicative of an increase in student engagement in research-oriented activities and an appreciation of real-world context by students.  相似文献   

13.
Inquiry-based learning is one approach to improving the quality of undergraduate education by moving toward more student-directed, interactive methods of learning while focusing on learning how to learn. This paper deals with a missing component in the inquiry-related literature—the extra-pedagogical challenges of introducing and maintaining inquiry-based learning in the curriculum. Based in the collective experience of McMaster University, a mid-size Canadian university that has been a pioneer in inquiry pedagogy, the paper describes the challenges administrators faced in supporting the introduction of inquiry-based learning as components of traditional courses, as inquiry-based courses, and as inquiry-based degree programs. Derived from interviews, the paper presents a series of strategies and lessons for introducing and maintaining inquiry pedagogy in the curriculum. These lessons will be broadly useful to administrators, curriculum designers and faculty developers and should be widely applicable to institutes of higher education.  相似文献   

14.
15.
This research suggests utilizing collaborative learning among high school students for better performance on ecology inquiry-based projects. A case study of nine 12th grade students who participated in collaborative learning sessions in the open field and in class is examined. The results show that the students concentrated on discussing the methods of measurement and observation in the open field, rather than the known methods from class or from the laboratory. Another major part of their discussions concentrated on knowledge construction. Knowledge construction occurred between students with same or similar learning abilities. The role of the teacher in these discussions was crucial: she had to deal with and dispel misconceptions; and she had to bridge the gap between low-ability and high-ability students, for enabling meaningful learning to occur. The article ends with a number of recommendations for using collaborative learning as a tool for achieving meaningful learning in high school ecology inquiry-based projects.  相似文献   

16.
Integration of inquiry-based approaches into curriculum is transforming the way science is taught and studied in undergraduate classrooms. Incorporating quantitative reasoning and mathematical skills into authentic biology undergraduate research projects has been shown to benefit students in developing various skills necessary for future scientists and to attract students to science, technology, engineering, and mathematics disciplines. While large-scale data analysis became an essential part of modern biological research, students have few opportunities to engage in analysis of large biological data sets. RNA-seq analysis, a tool that allows precise measurement of the level of gene expression for all genes in a genome, revolutionized molecular biology and provides ample opportunities for engaging students in authentic research. We developed, implemented, and assessed a series of authentic research laboratory exercises incorporating a large data RNA-seq analysis into an introductory undergraduate classroom. Our laboratory series is focused on analyzing gene expression changes in response to abiotic stress in maize seedlings; however, it could be easily adapted to the analysis of any other biological system with available RNA-seq data. Objective and subjective assessment of student learning demonstrated gains in understanding important biological concepts and in skills related to the process of science.  相似文献   

17.
The development of new courses is strengthened by assessment and a response to the assessment. Two new science methods courses for elementary and secondary preservice teachers were developed, fostered by the Great Salt Lake Project. The preservice teachers designed and performed research projects that they then converted into inquiry-based teaching units. The professors applied a 3-layer assessment scheme to evaluate the courses and the preservice teachers based on changes in student attitudes, student-generated curricula, and internal course evaluations. Each type of assessment effectively informed the reform process, and strengths and weaknesses of the courses were revealed. Strengths of the courses included students learning to see science as a process and comprehending inquiry as a pedagogical approach. Weaknesses observed included a lack of understanding in three areas: the role of assessment, the need to address cultural issues, and the significance of scientific literacy.  相似文献   

18.

Those of us who teach computer science courses, especially upper division courses, face a difficult pedagogical problem. What kind of activities can we provide that will help our students progress beyond the superficial level of learning yet another collection of disjointed facts and procedures? The literature on writing strongly suggests that writing assignments can help the students master difficult concepts and develop the higher level skills that should be part of their education. Short, narrowly focused writing assignments have been used effectively to supplement a wide range of computer science courses. Holistic grading and follow‐up discussions can reduce the grading burden without sacrificing the quality of the feedback.  相似文献   

19.
Context-based chemistry education aims to improve student interest and motivation in chemistry by connecting canonical chemistry concepts with real-world contexts. Implementation of context-based chemistry programmes began 20 years ago in an attempt to make the learning of chemistry meaningful for students. This paper reviews such programmes through empirical studies on six international courses, ChemCom (USA), Salters (UK), Industrial Science (Israel), Chemie im Kontext (Germany), Chemistry in Practice (The Netherlands) and PLON (The Netherlands). These studies are categorised through emergent characteristics of: relevance, interest/attitudes/motivation and deeper understanding. These characteristics can be found to an extent in a number of other curricular initiatives, such as science-technology-society approaches and problem-based learning or project-based science, the latter of which often incorporates an inquiry-based approach to science education. These initiatives in science education are also considered with a focus on the characteristics of these approaches that are emphasised in context-based education. While such curricular studies provide a starting point for discussing context-based approaches in chemistry, to advance our understanding of how students connect canonical science concepts with the real-world context, a new theoretical framework is required. A dialectical sociocultural framework originating in the work of Vygotsky is used as a referent for analysing the complex human interactions that occur in context-based classrooms, providing teachers with recent information about the pedagogical structures and resources that afford students the agency to learn.  相似文献   

20.
   This self-study examined the 1st-year science teacher educator's integration of instructional technology into a science methods course and modeled the reflective practice of her own teaching. Elementary science methods students participated in a series of inquiry-based activities that utilized various instructional technologies. Data sources included daily reflections, formative assessments, concern-based surveys, and class assignments. Findings from this self-study revealed that the teacher educator's own reflections and practical inquiry influenced and paralleled her students’ development of learning how to teach scientific inquiry using instructional technology. Results suggest that inviting preservice teachers into reflective practice and modeling for them the development of professional practical knowledge allow them to address the uncertainties in their own learning about using technology for inquiry-based science teaching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号