首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
INTRODUCTION Efforts of rational and effective energy man-agement, as well as environmental considerations, increase the interest in using renewable energy sources, especially solar energy. Because of discrep-ancy between the energy supply and demand in solar heating applications, a thermal energy storage (TES) device has to be used for the most effective utilization of the energy source. Energy storage combined with solar collectors and photovoltaic systems have been developed over the…  相似文献   

2.
A comprehensive numerical study was conducted to investigate heat transfer enhancement during the melting process in a 2D square cavity through dispersion of nanoparticles. A paraffin-based nanofluid containing various volume fractions of Cu was applied. The governing equations were solved on a non-uniform mesh using a pressure-based finite volume method with an enthalpy porosity technique to trace the solid-liquid interface. The effects of nanoparticle dispersion in a pure fluid and of some significant parameters, namely nanoparticle volume fraction, cavity size and hot wall temperature, on the fluid flow, heat transfer features and melting time were studied. The results are presented in terms of temperature and velocity profiles, streamlines, isotherms, moving interface position, solid fraction and dimensionless heat flux. The suspended nanoparticles caused an increase in thermal conductivity of nano-enhanced phase change material (NEPCM) compared to conventional PCM, resulting in heat transfer enhancement and a higher melting rate. In addition, the nanofluid heat transfer rate increased and the melting time decreased as the volume fraction of nanoparticles increased. The higher temperature difference between the melting temperature and the hot wall temperature expedited the melting process of NEPCM.  相似文献   

3.
相变储能材料及其应用   总被引:9,自引:0,他引:9  
综述了相变材料的研究进展状况,介绍了相变材料的种类和特点,讨论了固-液相变、固-固相变储能材料的性能和应用。  相似文献   

4.
新型蓄能技术-相变蓄能   总被引:5,自引:0,他引:5  
综述了相变材料的研究进展,介绍了相变材料的种类和特点,讨论了固-液相变、固-固-相变蓄能材料的性能和优缺点.并指出该领域中有待解决的问题及目前所采用方法,展望了蓄能技术的发展前景.  相似文献   

5.
相变蓄能技术是近年来材料领域新兴的研究热点,该技术对建筑节能、解决能源紧张有着重要的研究价值.文章将硅藻土和膨胀石墨作为吸附基体,吸附适合相变点的石蜡相变材料,制成三元复合相变蓄能材料掺入水泥砂浆中,并以火电厂炉渣代替黄砂作为砂浆中的细骨料,制成轻质高强蓄热地板,同地暖系统相结合,并利用太阳能或者工业废热等清洁能源对相变材料进行间歇式蓄热,以达到节能环保的功效.对制成的相变蓄能地板模型进行热工性能模拟的试验结果表明:相变蓄能地板具有良好的蓄热能力和经济环保效益,可以作为今后南方冬季取暖的一条有效途径,以缓解南方因采用集中供暖而造成能源紧缺的问题.  相似文献   

6.
对采用热的良导体——碳纤维改善相变材料的热传导速率开展了研究.通过碳纤维与甘二烷的物理混合制备了相变复合材料.采用示差扫描分析法、热重分析法和差示热分析法测试了此相变复合材料的热性能.研究了碳纤维的掺量与长度对甘二烷热传导性能的影响.研究结果表明,碳纤维能有效地改善甘二烷的热传导速率,碳纤维的掺量和长度是2个主要的影响因素.随着碳纤维掺量的增加,甘二烷的储热、放热速率增加.掺入碳纤维后,甘二烷的熔点从40.2℃增加到50.8℃.当掺入6%的碳纤维后,升温所需时间从720s降至660s;当掺入10%的碳纤维后,升温所需时间从720s降至600s.  相似文献   

7.
研究目的:通过实验方法定量研究在相变材料较为剧烈的熔化传热过程中散热器倾斜角度的改变对其瞬时性能所产生的影响。创新要点:定量研究在倾斜角度从水平到垂直时,储能式散热器在脉冲式热负荷作用下瞬时性能的变化规律,并在所研究的工况范围内给出了最优的倾斜角度参考值。研究方法:采用电加热方法模拟电子器件所产生的热源,通过调节电压改变脉冲式热负荷的强度和作用时间,并根据热电偶测量所得的加热表面温度变化来表征储能式散热器的瞬时性能。重要结论:在一定的倾斜角度下工作,可以有效提升基于相变材料的储能式散热器的瞬时性能。在加热功率为40 W、以75℃为目标时,其有效保护时间的相对增长可达约67%。  相似文献   

8.
An underground heat storage system in a double-film-covered greenhouse and an adjacent greenhouse without the heat storage system were designed on the basis of plant physiology to reduce the energy consumption in greenhouses. The results indicated that the floor temperature was respectively 5.2℃, 4.6℃ and 2.0 ℃ higher than that of the soil in the adjacent reference greenhouse after heat storage in a clear, cloudy and overcast sky in winter. Results showed that the temperature and humidity were feasible for plant growth in the heat saving greenhouse.  相似文献   

9.
研制了一种具有相变蓄热功能的热泵热水器,热泵利用夜间低谷电运行,放出冷凝热使相变蓄热材料融化,达到蓄热的目的;白天相变蓄热材料凝固,释放出热量,提供生活用热水。对该热水器进行了蓄热及放热试验,并对蓄热过程中热泵系统运行参数进行了分析。  相似文献   

10.
* Due to snow accumulation and ice formation onhighways, traffic accidents happen frequently in win-ter, causing great losses of economy and lives. Soroad snowremoval has been given great concern[1]. Geothermal road snow-melting system (GRSS)with solar energy storage is an effective, non-pollutionapplied sustainable energy technology developed in re-cent years. Its prominent advantage is to realize sea-sonal thermal storage and improve energy efficien-cy[2]. In Sapporo of Japan, a GRSS sys…  相似文献   

11.
Mathematical models are been proposed to simulate the thermal and metallurgical behaviors of the strip occtLrring on the run-out table (ROT) in a hot strip mill. A variational method is utilized for the discretization of the governing transient conduction-convection equation, with heat transfer coefficients adaptively determined by the actual mill data. To consider the thermal effect of phase transformation during cooling, a constitutive equation for describing austenite decomposition kinetics of steel in air and water cooling zones is coupled with the heat transfer model. As the basic required inputs in the numerical simulations, thermal material properties are experimentally measured for three carbon steels and the least squares method is used to statistically derive regression models for the properties, including specific heat and thermal conductivity. The numerical simulation and experimental results show that the setup accuracy of the temperature prediction system of ROT is effectively improved.  相似文献   

12.
In order to utilize solar energy effectively and to achieve a higher electrical efficiency by limiting the operating temperature of the photovoltaic (PV) panel, a novel photovoltaic/thermal solar-assisted heat pump (PV/T-SAHP) system was proposed and constructed. The hybrid solar system generates electricity and thermal energy simultaneously. A distributed parameters model of the PWT-SAHP system was developed and applied to analyze the system dynamic performance in terms of PV action, photothermal action and Rankine cycle processes. The simulation results indicated that the coefficient of performance (COP) of the proposed PV/T-SAHP can be much better than that of the conventional heat pump. Both PV-efficiency and photothermic efficiency have been improved considerably. The results also showed that the performance of this PV/T-SAHP system was strongly influenced by the evaporator area, tube pitch and tilt angle of the PV/T evaporator, which are the key factors in PV/T-SAHP system optimization and PV/T evaporator design.  相似文献   

13.
A detailed mathematical model of a direct internal reforming solid oxide fuel cell (DIR-SOFC) incorporating with simulation of chemical and physical processes in the fuel cell is presented. The model is developed based on the reforming and electrochemical reaction mechanisms, mass and energy conservation, and heat transfer. A computational fluid dynamics (CFD) method is used for solving the complicated multiple partial differential equations (PDEs) to obtain the numerical approximations.The resulting distributions of chemical species concentrations, temperature and current density in a cross-flow DIR-SOFC are given and analyzed in detail. Further, the influence between distributions of chemical species concentrations, temperature and current density during the simulation is illustrated and discussed. The heat and mass transfer, and the kinetics of reforming and electrochemical reactions have significant effects on the parameter distributions within the cell. The results show the particularchar acteristics of the DIR-SOFC among fuel cells, and can aid in stack design and control.  相似文献   

14.
With development of networked storage and its applications, united storage network (USN) combined with network attached storage (NAS) and storage area network (SAN) has emerged. It has such advantages as high performance, low cost, good connectivity, etc. However the security issue has been complicated because USN responds to block I/O and file I/O requests simultaneously. In this paper, a security system module is developed to prevent many types of atl~cks against USN based on NAS head.The module not only uses effective authentication to prevent unauthorized access to the system data, but also checks the data integrity.Experimental results show that the security module can not only resist remote attacks and attacks from those who has physical access to the USN, but can also be seamlessly integrated into underlying file systems, with little influence on their performance.  相似文献   

15.
INTRODUCTION Water management is one of the critical opera-tion issues in proton exchange membrane (PEM) fuelcells. Spatially varying concentrations of water inboth vapour and liquid form are expected throughoutthe cell because of varying rates of production andtransport (Sui and Djilali, 2005). Devising betterwater management is therefore a key issue in PEMFCdesign, and this requires improved understanding ofthe parameters affecting water transport in the mem-brane. Proper thermal m…  相似文献   

16.
为使热泵热水器在满足制热性的基础上兼顾经济性,提出了复叠式结构和蓄热器耦合的新型热泵热水器,探讨了它的性能,着重分析了经济性。结果表明该热水器的能效比高,工作温差大,适用区域广,在实行峰谷电价时经济性好,因而具有较高的应用价值。  相似文献   

17.
A detailed mathematical model of a direct internal reforming solid oxide fuel cell (DIR-SOFC) incorporating with simulation of chemical and physical processes in the fuel cell is presented. The model is developed based on the reforming and electrochemical reaction mechanisms, mass and energy conservation, and heat transfer. A computational fluid dynamics (CFD) method is used for solving the complicated multiple partial differential equations (PDEs) to obtain the numerical approximations. The resulting distributions of chemical species concentrations, temperature and current density in a cross-flow DIR-SOFC are given and analyzed in detail. Further, the influence between distributions of chemical species concentrations, temperature and current density during the simulation is illustrated and discussed. The heat and mass transfer, and the kinetics of reforming and electrochemical reactions have significant effects on the parameter distributions within the cell. The results show the particular characteristics of the DIR-SOFC among fuel cells, and can aid in stack design and control.  相似文献   

18.
IntroductionAnidealstoragearchitecturewouldprovidestrongsecurity,datasharingacrossplatforms(i.e.operatingsystems),highperformance,andscalabilityintermsofthenumberofdevicesandclients.Today’sarchitecturesforcesystemdesignerstodecidewhichofthesefeaturesismostimportant,aschoosinganarchitectureinvolvesatrade-off.Thethreestoragearchitecturesincommonusetodayaredirect-attachedstorage(DAS),storageareanetworks(SANs),andnetwork-attachedstorage(NAS).Thefourtharchitecture,whichisoftencalledtheobjectst…  相似文献   

19.
通过羧基酰氯酯化法合成了硬脂酸十六烷酯固—液相变材料,并使用傅立叶红外光谱仪(FT-IR)、广角X-射线衍射仪(WAXD)、示差扫描量热仪(DSC)、热重分析仪(TG)等测试手段研究了材料的结构、结晶性能以及热性能(相变焓、相变温度和热稳定性),发现所得材料具有较高的焓变,同时其热稳定性相比硬脂酸和十六醇得到了较大的提高,是一种具有较好相变性能的新型固—液相变储能材料.  相似文献   

20.
A cooling system consisting of several heat exchange modules is a necessary part of an automobile, and its performance has a direct effect on a vehicle’s energy consumption. Heat exchangers, such as a charged air cooler (CAC), radiator, oil cooler, or condenser have different structures and can be arranged in various orders, and each combination may produce different effects because of interactions among them. In this study, we aimed to explore the principles governing interactions among adjacent heat exchangers in a cooling system, using numerical simulation and experimental technology. 3D models with different combinations were developed, compared, and analyzed comprehensively. A wind tunnel test platform was constructed to validate the computational results. We found that the heat dissipation of the modules was affected slightly by their relative position (the rules basically comply with the field synergy principle), but was independent of the modules’ spacing within a certain distance range. The heat dissipation of one module could be effectively improved by restructuring, but with a penalty of higher resistance. However, the negative effect on the downstream module was much less than expected. The results indicated that the intensity of heat transfer depends not only on the average temperature difference between cold and hot mediums, but also on the temperature distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号