首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Talent identification (TID) and talent development (TDE) programmes in track sprint cycling use ergometer- and track-based tests to select junior athletes and assess their development. The purpose of this study was to assess which tests are best at monitoring TID and TDE. Ten male participants (16.2 ± 1.1 year; 178.5 ± 6.0 cm and 73.6 ± 7.6 kg) were selected into the national TID squad based on initial testing. These tests consisted of two 6-s maximal sprints on a custom-built ergometer and 4 maximal track-based tests (2 rolling and 2 standing starts) using 2 gear ratios. Magnitude-based inferences and correlation coefficients assessed changes following a 3-month TDE programme. Training elicited meaningful improvements (80–100% likely) in all ergometer parameters. The standing and rolling small gear, track-based effort times were likely and very likely (3.2 ± 2.4% and 3.3 ± 1.9%, respectively) improved by training. Stronger correlations between ergometer- and track-based measures were very likely following training. Ergometer-based testing provides a more sensitive tool than track-based testing to monitor changes in neuromuscular function during the early stages of TDE. However, track-based testing can indicate skill-based improvements in performance when interpreted with ergometer testing. In combination, these tests provide information on overall talent development.  相似文献   

2.
ABSTRACT

Post-activation potentiation likely acutely improves power-based performance; however, few studies have demonstrated improved endurance performance. Forty collegiate female rowers performed isometric potentiating (ISO), dynamic potentiating (DYN) and control (CON) warm-up protocols on a rowing ergometer, followed by a three-minute all-out test to evaluate their total distance, peak power, mean power, critical power, anaerobic working capacity (W’) and stroke rate. Fifteen-second splits were also analysed. ISO consisted of 5 × 5-second static muscle actions with the ergometer handle rendered immovable with a nylon strap, while DYN consisted of 2 × 10-second all-out rowing bouts, separated by a 2-minute rest interval. The participants were divided into high and low experience groups by median experience level (3.75 years) for statistical analysis. Significant differences (DYN > CON; p < 0.05) were found for distance (+5.6 m), mean power (+5.9 W) and W’ (+1561.6 J) for more experienced rowers (n = 19) and no differences for less experienced rowers (n = 18). Mean power in DYN was significantly greater than CON and ISO in the 15–30, 30–45, 45–60 and 60–75 second intervals independent of experience level. These results suggest that DYN may benefit experienced female rowers and that these strategies might benefit a greater power output over shorter distances regardless of experience.  相似文献   

3.
Purpose: The aim of this study was to examine the effect of active versus passive recovery on 6 repeated Wingate tests (30-s all-out cycling sprints on a Velotron ergometer). Method: Fifteen healthy participants aged 29 (SD = 8) years old (body mass index = 23 [3] kg/m2) participated in 3 sprint interval training sessions separated by 3 to 7 days between each session during a period of 1 month. The 1st visit was familiarization to 6 cycling sprints; the 2nd and 3rd visits involved a warm-up followed by 6 30-s cycling sprints. Each sprint was followed by 4 min of passive (resting still on the ergometer) or active recovery (pedaling at 1.1 W/kg). The same recovery was used within each visit, and recovery type was randomized between visits. Results: Active recovery resulted in a 0.6 W/kg lower peak power output in the second sprint (95% confidence interval [CI] [ ? 0.2, ? 0.8 W/kg], effect size = 0.50, p < .01) and a 0.4 W/kg greater average power output in the 5th and 6th sprints (95% CI [+0.2,+0.6 W/kg], effect size = 0.50, p < .01) compared with passive recovery. There was little difference between fatigue index, total work, or accumulated work between the 2 recovery conditions. Conclusions: Passive recovery is beneficial when only 2 sprints are completed, whereas active recovery better maintains average power output compared with passive recovery when several sprints are performed sequentially (partial eta squared between conditions for multiple sprints = .38).  相似文献   

4.
Irisin and redox status markers seem to share common pathways of exercise-induced upregulation. The aim of the present study was to assess the effects of sprint interval swimming exercise dose and sex on the circulating levels of irisin and redox status markers in adolescent swimmers. Sixteen male and 16 female adolescent swimmers completed two sets of 4 × 50 m maximal freestyle swimming with a send-off time of 90 s, separated by 10 min of passive recovery. Venous blood samples were obtained pre-exercise (Pre), after the first set (Post1) and after the second set (Post2). Males had higher irisin levels than females. Reduced glutathione (GSH, μmol g Hb?1) increased from 8.6 (2.2) [pooled males and females, mean (SD) throughout] at Pre to 9.4 (2.1) at Post1 and Post2. Total antioxidant capacity (μmol DPPH mL?1) increased from 0.89 (0.17) at Post1 to 0.94 (0.16) at Post2. 8-hydroxy-2´-deoxyguanosine (ng mL?1) increased from 20.9 (6.9) at Pre and 21.5 (7.1) at Post1 to 25.0 (10.9) at Post2. Overall, sprint interval swimming exercise induced small but potentially effective changes in the studied parameters. Exercise dose influenced the GSH and 8-OHdG responses, and sex affected irisin levels.  相似文献   

5.
ABSTRACT

Female volleyball athletes incorporate dynamic and static stretching into a warm-up, with evidence generally supporting dynamic stretching to improve performance. However, the effects of these stretching practices on injury risk during subsequent volleyball manoeuvres have yet to be fully elucidated in the warm-up literature. Three-dimensional kinematic data associated with non-contact, lower extremity injury were recorded on 12 female collegiate club volleyball athletes during unilateral landing tasks on the dominant and non-dominant limb. Participants performed landings as part of a volleyball-simulated manoeuvre prior to and post-dynamic (DWU) and combined dynamic-static (CDS) warm-ups. A significant reduction in non-dominant hip adduction angle was found at 15 min post CDS warm-up (= 0.016; = 0.38), however, no other warm-up differences were detected. The non-dominant limb demonstrated greater knee abduction (= 0.006; = 0.69) and internal rotation angle (= 0.004; = 0.88), suggesting that this limb demonstrates more risky landing patterns that are potentially due to altered trunk positioning upon landing. The results show that the majority of selected landing kinematics are unaffected by additional static stretching to a dynamic warm-up and that the non-dominant limb may be at a higher injury risk in female volleyball athletes.  相似文献   

6.
ABSTRACT

The optimal scheduling of Nordic Hamstring exercises (NHEs) relative to football training sessions is unknown. We examined the acute neuromuscular and performance responses to NHE undertaken either before (BT) or after (AT) simulated football training. Twelve amateur players performed six sets of five repetitions of the NHE either before or after 60 min of standardised football-specific exercise (SAFT60). Surface electromyography signals (EMG) of the hamstring muscles were recorded during both the NHE, and maximum eccentric actions of the knee flexors (0.52 rad · s–1) performed before and after the NHE programme, and at 15 min intervals during SAFT60. Ten-metre sprint times were recorded on three occasions during each 15 min SAFT60 segment. Greater eccentric hamstring fatigue following the NHE programme was observed in BT versus AT (19.8 %; very likely small effect), which was particularly apparent in the latter range of knee flexion (0–15°; 39.6%; likely moderate effect), and synonymous with hamstring EMG declines (likely small–likely moderate effects). Performing NHE BT attenuated sprint performance declines (2.0–3.2%; likely small effects), but decreased eccentric hamstring peak torque (–14.1 to –18.9%; likely small effects) during football-specific exercise. Performing NHE prior to football training reduces eccentric hamstring strength and may exacerbate hamstring injury risk.  相似文献   

7.
Purpose: The purpose of this investigation was to examine the effects of a submaximal running warm-up on running performance in male endurance athletes (n = 16, Mage = 21 ± 2 years, MVO2max = 69.3 ± 5.1 mL/kg/min). Method: Endurance performance was determined by a 30-min distance trial after control and submaximal running warm-up conditions in a randomized crossover fashion. The warm-up began with 5 min of quiet sitting, followed by 6 min of submaximal running split into 2-min intervals at speeds corresponding to 45%, 55%, and 65% maximal oxygen consumption (VO2max). A 2-min walk at 3.2 km/hr concluded the 13-min warm-up protocol. For the control condition, participants sat quietly for 13 min. VO2 and heart rate (HR) were determined at Minutes 0, 5, and 13 of the pre-exercise protocol in each condition. Results: At the end of 13 min prior to the distance trial, mean VO2 (warm-up = 14.1 ± 2.2 mL/kg/min vs. control = 5.5 ± 1.7 mL/kg/min) and mean HR (warm-up = 105 ± 11 bpm vs. control = 67 ± 11 bpm) were statistically greater (p < .001) in the warm-up condition compared with the control condition. The distance run did not statistically differ (p = .37) between the warm-up (7.8 ± 0.5 km) and control (7.7 ± 0.6 km) conditions; however, effect size calculation revealed a small effect (d = 0.2) in favor of the warm-up condition. Thus, the warm-up employed may have important and practical implications to determine placing among high-level athletes in close races. Conclusions: These findings suggest a submaximal running warm-up may have a small but critical effect on a 30-min distance trial in competitive endurance athletes. Further, the warm-up elicited increases in physiological variables VO2 and HR prior to performance; thus, a submaximal specific warm-up should warrant consideration.  相似文献   

8.
This study investigated the effects of a mentally fatiguing test on physical tasks among elite cricketers. In a cross-over design, 10 elite male cricket players from a professional club performed a cricket run-two test, a Batak Lite reaction time test and a Yo-Yo-Intermittent Recovery Level 1 (Yo-Yo-IR1) test, providing a rating of perceived exertion (RPE) after completing a 30-min Stroop test (mental fatigue condition) or 30-min control condition. Perceived fatigue was assessed before and after the two conditions and motivation was measured before testing. There were post-treatment differences in the perception of mental fatigue (P < 0.001; d = ?7.82, 95% CIs = ?9.05–6.66; most likely). Cricket run-two (P = 0.002; d = ?0.51, 95% CIs = ?0.72–0.30; very likely), Yo-Yo-IR1 distance (P = 0.023; d = 0.39, 95% CIs = 0.14–0.64; likely) and RPE (P = 0.001; d = ?1.82, 95% CIs = ?2.49–1.14; most likely) were negatively affected by mental fatigue. The Batak Lite test was not affected (P = 0.137), yet a moderate (d = 0.41, 95% CIs = ?0.05–0.87) change was likely. Mental fatigue, induced by an app-based Stroop test, negatively affected cricket-relevant performance.  相似文献   

9.
This study aimed to investigate the acute effects of two barbell hip thrust-based (BHT) post-activation potentiation (PAP) protocols on subsequent sprint performance. Using a crossover design, eighteen handball athletes performed maximal 15-m sprints before and 15s, 4min and 8min after two experimental protocols consisting of BHT loaded with either 50% or 85% 1RM (50PAP and 85PAP, respectively), in order to profile the transient PAP effects. The resulting sprint performances were significantly impaired at 15s only after the 85PAP protocol, which induced likely and very likely greater decreases compared to the 50PAP. At 4min and 8min, significant improvements and very likely beneficial effects were observed in the 10m and 15m performances following both protocols. Significant differences were found when comparing the two PAPs over time; the results suggested very likely greater performance improvements in 10m following the 85PAP after 4min and 8min, and possible greater performance improvements in 15m after 4min. Positive correlations between BHT 1RMs values and the greatest individual PAP responses on sprint performance were found. This investigation showed that both moderate and intensive BHT exercises can induce a PAP response, but the effects may differ according to the recovery following the potentiating stimulus and the individual`s strength level.  相似文献   

10.
Abstract

In the present study, we examined the independent and combined effects of an inspiratory muscle warm-up and inspiratory muscle training on intermittent running to exhaustion. Twelve males were recruited to undertake four experimental trials. Two trials (Trials 1 and 2) preceded either a 4-week training period of 1 × 30 breaths twice daily at 50% (experimental group) or 15% (control group) maximal inspiratory mouth pressure (PImax). A further two trials (Trials 3 and 4) were performed after the 4 weeks. Trials 2 and 4 were preceded by a warm-up: 2 × 30 breaths at 40% PImax. Pre-training PImax and distance covered increased (P < 0.05) similarly between groups after the warm-up (~11% and ~5–7% PImax and distance covered, respectively). After training, PImax increased by 20 ± 6.1% (P < 0.01; d = 3.6) and 26.7 ± 6.3% (P < 0.01; d = 3.1) when training and warm-up were combined in the experimental group. Distance covered increased after training in the experimental group by 12 ± 4.9% (P < 0.01; d = 3.6) and 14.9 ± 4.5% (P < 0.01; d = 2.3) when training and warm-up interventions were combined. In conclusion, inspiratory muscle training and inspiratory muscle warm-up can both increase running distance independently, but the greatest increase is observed when they are combined.  相似文献   

11.
This study investigated the effects on neuromuscular performance of a 6-week Optimal Load Training (OLT) and a novel modified Complex Training (MCT) (complex pairs: the same exercise using a moderate and an OL) in basketball players, in-season. Eighteen male athletes were randomly assigned to one of the protocols. Anthropometric measurements were taken to evaluate body composition. Lower- and upper-body maximum dynamic strength, countermovement jump (CMJ), standing long jump (SLJ), 10-m sprint and change of direction (COD) were also assessed. Moderate-to-large strength gains (presented as percentage change ± 90% confidence limits) were obtained for half-squat (OLT: 10.8 ± 5.3%; MCT: 17.2 ± 11.6%) and hip thrust (OLT: 23.5 ± 17.7%; MCT: 28.2 ± 19.0%). OLT athletes achieved likely small improvements in sprint (1.6 ± 1.6%) and COD (3.0 ± 3.2%). Players in the MCT attained likely moderate improvements in COD (3.0 ± 2.0%) and possibly small in SLJ (2.5 ± 4.6%). No protocol relevantly affected CMJ or body composition. An ANCOVA test revealed unclear between-group differences. In conclusion, both protocols increased basketball players’ strength without the use of heavy loads (> 85% 1RM) and without impairing sprint, CMJ and SLJ performance. These findings suggest that basketball strength and conditioning professionals may use either method to counteract strength losses during the season.  相似文献   

12.
This study examined the validity and reliability of a 30-second running sprint test using two non-motorized treadmills compared to the established Wingate Anaerobic Test. Twenty-four participants completed three sessions in a randomized order on a: (1) manual mode treadmill (Woodway); (2) specialized interval training treadmill (HiTrainer); and (3) Wingate cycle ergometer. In a subset of 15 participants, 2 additional sessions were completed on both treadmills to establish the test–retest reliability. Peak (Woodway: r = .68; HiTrainer: r = .58; p < .003), average (Woodway: r = .82; HiTrainer: r = .72, p < .001), and minimum (Woodway: r = .64; HiTrainer: r = .42, p < .043) speed indices were moderately to very strongly correlated with corresponding Wingate Anaerobic Test outputs and had excellent test–retest reliability (all intraclass correlation coefficients > .75). Fatigue index during the Wingate Anaerobic Test (51.20 ± 7.14%) was moderately correlated with the Woodway (32.9 ± 10.9%, r = .55, p = .005) only. This 30-second running sprint test may be a valid and reliable mode-specific alternative to the Wingate Anaerobic Test.  相似文献   

13.
Abstract

The aim of this study was to determine sprint profiles of professional female soccer players and evaluate how various speed thresholds impact those outcomes. Seventy-one professional players competing in full matches were assessed repeatedly during 12 regular season matches using a Global Positioning System (GPS). Locomotion ≥18 km · h?1 was defined as sprinting and each event was classified into: Zone 1: 18.0–20.9 km· h?1; Zone 2: 21.0–22.9 km · h?1; Zone 3: 23.0–24.9 km · h?1 and Zone 4: >25 km · h?1. Outcomes included: duration (s), distance (m), maximum speed (km · h?1), duration since previous sprint (min) and proportion of total sprint distance. In total 5,019 events were analysed from 139 player-matches. Mean sprint duration, distance, maximum speed and time between sprints were 2.3 ± 1.5 s, 15.1 ± 9.4 m, 21.8 ± 2.3 km· h?1, and 2.5 ± 2.5 min, respectively. Mean sprint distances were 657 ± 157, 447 ± 185, and 545 ± 217 m for forwards, midfielders and defenders, respectively (P ≤ 0.046). Midfielders had shorter sprint duration (P = 0.023), distance (P ≤ 0.003) and maximum speed (P < 0.001), whereas forwards performed more sprints per match (43 ± 10) than midfielders (31 ± 11) and defenders (36 ± 12) (P ≤ 0.016). Forty-five percent, 29%, 15%, and 11% of sprints occurred in sprint Zones 1, 2, 3 and 4, respectively. This group of professional female soccer players covered 5.3 ± 2.0% of total distance ≥18 km · h?1 with positional differences and percent decrements distinct from other previously identified elite players. These data should guide the development of high intensity and sprint thresholds for elite-standard female soccer players.  相似文献   

14.
The purpose of this study was to determine the effectiveness of a 4-week running sprint interval training protocol to improve both aerobic and anaerobic fitness in middle-aged adults (40–50 years) as well as compare the adaptations to younger adults (20–30 years). Twenty-eight inactive participants – 14 young 20–30-year-olds (n = 7 males) and 14 middle-aged 40–50-year-olds (n = 5 males) – completed 4 weeks of running sprint interval training (4 to 6, 30-s “all-out” sprints on a curved, self-propelled treadmill separated by 4 min active recovery performed 3 times per week). Before and after training, all participants were assessed for maximal oxygen consumption (VO2max), 2000 m time trial performance, and anaerobic performance on a single 30-s sprint. There were no interactions between group and time for any tested variable, although training improved relative VO2max (young = 3.9, middle-aged = 5.2%; P < 0.04), time trial performance (young = 5.9, middle-aged = 8.2%; P < 0.001), peak sprint speed (young = 9.3, middle-aged = 2.2%; P < 0.001), and average sprint speed (young = 6.8, middle-aged = 11.6%; P < 0.001) in both young and middle-aged groups from pre- to post-training on the 30-s sprint test. The current study demonstrates that a 4-week running sprint interval training programme is equally effective at improving aerobic and anaerobic fitness in younger and middle-aged adults.  相似文献   

15.
16.
The purpose of the study was to investigate the sensitivity of an alternative maximal accumulated oxygen deficit (MAODALT) method to discriminate the “anaerobic” capacity while comparing: least trained (LT) participants (n = 12), moderately trained (MT) participants (n = 12), endurance trained (ET) participants (n = 16), and rugby (RG) players (n = 11). Participants underwent a graded exercise test on a treadmill and a supramaximal effort for assessing MAODALT. MAODALT was calculated as the sum of oxygen equivalents from the phosphagen and glycolytic metabolic pathways. MAODALT was significantly higher (< 0.05) in RG (64.4 ± 12.1 mL · kg?1) than in ET (56.8 ± 5.4 mL · kg?1; effect size [ES] = 0.77; +13.5%), MT (53.8 ± 5.3 mL · kg?1; ES = 1.08; +19.8%), and LT (49.9 ± 4.5 mL · kg?1; ES = 1.50; +36.4%). In addition, the magnitude-based inference analysis revealed that MAODALT was likely (LT vs. MT), very likely (MT vs. RG, and ET vs. RG) and most likely (LT vs. ET, and LT vs. RG) different between all groups, except for MT and ET, which presented an unclear difference. In conclusion, MAODALT was sensitive enough to distinguish the “anaerobic” capacity in individuals with different training status, especially for RG players compared with LT participants and MT participants.  相似文献   

17.
The aim of this study was to compare the training effects based on repeated sprint ability (RSA) (with one change of direction) with an intensive repeated sprint ability (IRSA) (with two changes of direction) on jump performance and aerobic fitness. Eighteen male basketball players were assigned to repeated sprint ability and intensive repeated sprint ability training groups (RSAG and IRSAG). RSA, IRSA, squat jump (SJ), countermovement jump (CMJ) and Yo-Yo intermittent recovery level 1 test were assessed before and after four training weeks. The RSA and IRSA trainings consisted of three sets of six sprints (first two weeks) and eight sprints (second two weeks) with 4-min sets recovery and 20-s of sprints recovery. Four weeks of training led to an overall improvement in most of the measures of RSA, but little evidence of any differences between the two training modes. Jump performance was enhanced: CMJ of 7.5% (< 0.0001) and 3.1% (= 0.016) in IRSAG and RSAG respectively. While SJ improved of 5.3% (= 0.003) for IRSAG and 3.4% (= 0.095) for RSAG. Conversely the Yo-Yo distance increased 21% (= 0.301) and 34% (= 0.017) in IRSAG and RSAG respectively. Therefore, short-term repeated sprint training with one/two changes of direction promotes improvements in both RSA and IRSA respectively but the better increase on jump performance shown a few changes on sprint and endurance performances.  相似文献   

18.
Abstract

Seven 6 s sprints with 30 s recovery between sprints were performed against two resistive loads: 50 (L50) and 100 (L100) g · kg?1 body mass. Inertia-corrected and -uncorrected peak and mean power output were calculated. Corrected peak power output in corresponding sprints and the drop in peak power output relative to sprint 1 were not different in the two conditions, despite the fact that mean power output was 15–20% higher in L100 (P < 0.01). The effect of inertia correction on power output was more pronounced for the lighter load (L50), with uncorrected peak power output in sprint 1 being 42% lower than the corresponding corrected peak power output, while this was only 16% in L100. Fatigue assessed by the drop in uncorrected peak and mean power output in sprint 7 relative to sprint 1 was less compared with that obtained by corrected power values, especially in L50 (drop in uncorrected vs. corrected peak power output: 13.3 ± 2.2% vs. 23.1 ± 4.1%, P < 0.01). However, in L100, the difference between the drop in corrected and uncorrected mean power output in sprint 7 was much smaller (24.2 ± 3.1% and 21.2 ± 2.7%, P < 0.01), indicating that fatigue may be safely assessed even without inertia correction when a heavy load is used. In conclusion, when inertia correction is performed, fatigue during repeated sprints is unaffected by resistive load. When inertia correction is omitted, both power output and the fatigue profile are underestimated by an amount dependent on resistive load. In cases where inertia correction is not possible during a repeated sprints test, a heavy load may be preferable.  相似文献   

19.
20.
In order to maximise the potential for success, developing nations need to produce superior systems to identify and develop talent, which requires comprehensive and up-to-date values on elite players. This study examined the anthropometric and physical characteristics of youth female team handball players (16.07 ± 1.30 years) in non-elite (= 47), elite (= 37) and top-elite players (= 29). Anthropometric profiling included sum of eight skinfolds, body mass, stature, girths, breadths and somatotype. Performance tests included 20 m sprint, counter-movement jump, throwing velocity, repeated shuttle sprint and jump ability test, and Yo-Yo Intermittent Recovery Test Level 1. Youth top-elite players had greater body mass, lean mass, stature, limb girths and breadths than elite and non-elite players, while only stature and flexed arm were higher in elite compared to non-elite players (all P < 0.05). Sum of skinfolds and waist-to-hip ratio were similar between groups (> 0.05). Top-elite performed better in most performance tests compared to both elite and non-elite players (P < 0.05), although maximal and repeated 10 m sprints were similar between playing standards (P > 0.05). Elite outperformed non-elite players only in throwing velocity. The findings reveal that non-elite players compare unfavourably to top-elite international European players in many anthropometric and performance characteristics, and differ in a few characteristics compared to elite European club team players. This study is useful for emerging team handball nations in improving talent identification processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号