首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper focuses on the parameter estimation problem of multivariate output-error autoregressive systems. Based on the decomposition technique and the auxiliary model identification idea, we derive a decomposition based auxiliary model recursive generalized least squares algorithm. The key is to divide the system into two fictitious subsystems, the one including a parameter vector and the other including a parameter matrix, and to estimate the two subsystems using the recursive least squares method, respectively. Compared with the auxiliary model based recursive generalized least squares algorithm, the proposed algorithm has less computational burden. Finally, an illustrative example is provided to verify the effectiveness of the proposed algorithms.  相似文献   

2.
In this paper, we consider the parameter estimation issues of a class of multivariate output-error systems. A decomposition based recursive least squares identification method is proposed using the hierarchical identification principle and the auxiliary model idea, and its convergence is analyzed through the stochastic process theory. Compared with the existing results on parameter estimation of multivariate output-error systems, a distinct feature for the proposed algorithm is that such a system is decomposed into several sub-systems with smaller dimensions so that parameters to be identified can be estimated interactively. The analysis shows that the estimation errors converge to zero in mean square under certain conditions. Finally, in order to show the effectiveness of the proposed approach, some numerical simulations are provided.  相似文献   

3.
This paper uses the filtering technique, transforms a pseudo-linear auto-regressive system into an identification model and presents a new recursive least squares parameter estimation algorithm pseudo-linear auto-regressive systems. The proposed algorithm has a high computational efficiency because the dimensions of its covariance matrices become small compared with the recursive generalized least squares algorithm.  相似文献   

4.
The identification problem of output-error autoregressive (OEAR) systems with scarce measurements is considered in this paper. In order to overcome the massive absence of outputs, an interval-varying recursive identification algorithm is proposed through changing the sampling interval and skipping the missing outputs. Based on the maximum likelihood principle, a maximum likelihood interval-varying recursive least squares algorithm is proposed. The effectiveness of the proposed algorithm is tested by a numerical simulation example, and an application example about the heading motion control of underwater vehicle.  相似文献   

5.
Maximum likelihood methods are significant for parameter estimation and system modeling. This paper gives the input-output representation of a bilinear system through eliminating the state variables in it, and derives a maximum likelihood least squares based iterative for identifying the parameters of bilinear systems with colored noises by using the maximum likelihood principle. A least squares based iterative (LSI) algorithm is presented for comparison. It is proved that the maximum of the likelihood function is equivalent to minimize the least squares cost function. The simulation results indicate that the proposed algorithm is effective for identifying bilinear systems and the maximum likelihood LSI algorithm is more accurate than the LSI algorithm.  相似文献   

6.
This paper surveys the identification of observer canonical state space systems affected by colored noise. By means of the filtering technique, a filtering based recursive generalized extended least squares algorithm is proposed for enhancing the parameter identification accuracy. To ease the computational burden, the filtered regressive model is separated into two fictitious sub-models, and then a filtering based two-stage recursive generalized extended least squares algorithm is developed on the basis of the hierarchical identification. The stochastic martingale theory is applied to analyze the convergence of the proposed algorithms. An experimental example is provided to validate the proposed algorithms.  相似文献   

7.
This paper studies the parameter estimation problems of multivariate equation-error autoregressive moving average systems. Firstly, a gradient-based iterative algorithm is presented as a comparison. In order to improve the computational efficiency and the parameter estimation accuracy, a decomposition-based gradient iterative algorithm is presented by using the decomposition technique. The key is to transform an original system into two subsystems and to estimate the parameters of each subsystem, respectively. Compared with the gradient-based iterative algorithm, the decomposition-based algorithm requires less computational efforts, and the simulation results indicate that this algorithm is effective.  相似文献   

8.
This paper focuses on parameter estimation problems for non-uniformly sampled Hammerstein nonlinear systems. By combining the lifting technique and state space transformation, we derive a nonlinear regression identification model with different input and output updating rates. Furthermore, the unmeasurable state vector is estimated by Kalman filter, and by using the hierarchical identification principle, we develop a hierarchical recursive least squares algorithm for estimating the unknown parameters of the identification model. Finally, illustrative examples are given to indicate that the proposed algorithm is effective.  相似文献   

9.
This paper considers the parameter identification problem of a bilinear state space system with colored noise based on its input-output representation. An input-output representation of a bilinear state-space system is derived for the parameter identification by eliminating the state variables in the model, and a recursive generalized extended least squares algorithm is presented for estimating the parameters of the obtained model. Furthermore, a three-stage recursive generalized extended least squares algorithm is proposed for reducing the computational cost. The validity of the proposed method is evaluated through a numerical example.  相似文献   

10.
This paper presents a decomposition based least squares estimation algorithm for a feedback nonlinear system with an output error model for the open-loop part by using the auxiliary model identification idea and the hierarchical identification principle and by decomposing a system into two subsystems. Compared with the auxiliary model based recursive least squares algorithm, the proposed algorithm has a smaller computational burden. The simulation results indicate that the proposed algorithm can estimate the parameters of feedback nonlinear systems effectively.  相似文献   

11.
Mathematical models are basic for designing controller and system identification is the theory and methods for establishing the mathematical models of practical systems. This paper considers the parameter identification for Hammerstein controlled autoregressive systems. Using the key term separation technique to express the system output as a linear combination of the system parameters, the system is decomposed into several subsystems with fewer variables, and then a hierarchical least squares (HLS) algorithm is developed for estimating all parameters involving in the subsystems. The HLS algorithm requires less computation than the recursive least squares algorithm. The computational efficiency comparison and simulation results both confirm the effectiveness of the proposed algorithms.  相似文献   

12.
This paper researches parameter estimation problems for an input nonlinear system with state time-delay. Combining the linear transformation and the property of the shift operator, the system is transformed into a bilinear parameter identification model. A gradient based and a least squares based iterative parameter estimation algorithms are presented for identifying the state time-delay system. The simulation results confirm that the proposed two algorithms are effective and the least squares based iterative algorithm has faster convergence rates than the gradient based iterative algorithm.  相似文献   

13.
This paper studies the parameter estimation problem of Hammerstein output error autoregressive (OEAR) systems. According to the maximum likelihood principle and the Levenberg–Marquardt optimization method, a maximum likelihood Levenberg–Marquardt recursive (ML-LM-R) algorithm using the varying interval input–output data is proposed. Furthermore, a stochastic gradient algorithm is also derived in order to compare it with the proposed ML-LM-R algorithm. Two numerical examples are provided to verify the effectiveness of the proposed algorithms.  相似文献   

14.
Two auxiliary model based recursive identification algorithms, a generalized extended stochastic gradient algorithm and a recursive generalized extended least squares algorithm, are developed for multivariable Box–Jenkins systems. The basic idea is to use the auxiliary models to estimate the unknown noise-free outputs of the system and to replace the unmeasurable terms in the information vectors with their estimates. We prove that the estimation errors given by the proposed algorithms converge to zero under the persistent excitation condition. Finally, an example is provided to show the effectiveness of the proposed algorithms.  相似文献   

15.
This paper considers the robust identification issue of linear systems represented by autoregressive exogenous models using the recursive expectation-maximization (EM) algorithm. In this paper, a recursive Q-function is formulated based on the maximum likelihood principle. Meanwhile, the outliers that frequently appear in practical processes are accommodated with the Student’s t-distribution. The parameter vector, variance of noise, and the degree of freedom are recursively estimated. Finally, a numerical example, as well as a simulated continuous stirred tank reactor (CSTR) system, is performed to verify the effectiveness of the proposed recursive EM algorithm.  相似文献   

16.
In this paper, the identification of the Wiener–Hammerstein systems with unknown orders linear subsystems and backlash is investigated by using the modified multi-innovation stochastic gradient identification algorithm. In this scheme, in order to facilitate subsequent parameter identification, the orders of linear subsystems are firstly determined by using the determinant ratio approach. To address the multi-innovation length problem in the conventional multi-innovation least squares algorithm, the innovation updating is decomposed into sub-innovations updating through the usage of multi-step updating technique. In the identification procedure, by reframing two auxiliary models, the unknown internal variables are replaced by using the outputs of the corresponding auxiliary model. Furthermore, the convergence analysis of the proposed algorithm has shown that the parameter estimation error can converge to zero. Simulation examples are provided to validate the efficiency of the proposed algorithm.  相似文献   

17.
For multivariable systems with autoregressive moving average noises, we decompose the multivariable system into m subsystems (m denotes the number of outputs) and present a maximum likelihood generalized extended gradient algorithm and a data filtering based maximum likelihood extended gradient algorithm to estimate the parameter vectors of these subsystems. By combining the maximum likelihood principle and the data filtering technique, the proposed algorithms are effective and have computational advantages over existing estimation algorithms. Finally, a numerical simulation example is given to support the developed methods and to show their effectiveness.  相似文献   

18.
自适应滤波算法根据采用优化准则的不同,通常分为两类最基本算法:最小均方误差(LMS)类算法和递归最小二乘(RLS)类算法。本文重点介绍了最小均方误差算法和递归最小二乘算法,并将这两类算法在MATLAB上进行仿真,并对结果作出比较和分析。  相似文献   

19.
《Journal of The Franklin Institute》2022,359(17):10145-10171
Considering the colored noises from the process environments, the parameter estimation problems for the feedback nonlinear equation-error systems interfered by moving average noises are addressed in this paper. Due to small computational burden, the gradient search principle is adopted to the feedback nonlinear systems and an overall extended stochastic gradient algorithm is derived for parameter estimation. Introducing the innovation length, the scalar innovation is expanded into the innovation vector and a multi-innovation extended stochastic gradient algorithm is further developed to reach the high estimation accuracy by utilizing more dynamical observed data. Furthermore, to assure the convergence of the proposed algorithms, their convergence properties are analyzed through the stochastic process theory. Finally, the experimental results indicate the effectiveness of the proposed algorithms.  相似文献   

20.
A technique for the modeling of nonlinear control processes using fuzzy modeling approach based on the Takagi-Sugeno fuzzy model with a combination of genetic algorithm and recursive least square is proposed. This paper discusses the identification of the parameters at the antecedent and consequent parts of the fuzzy model. For the antecedent fuzzy parameters, genetic algorithm is used to tune them while at the consequent part, recursive least squares approach is used to identify the system parameters. This approach is applied to a process control rig with three subsystems: a heating element, a heat exchanger and a compartment tank. Experimental results show that the proposed approach provides better modeling when compared with Takagi Sugeno fuzzy modeling technique and the linear modeling approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号