首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
在求某些函数的最大值、最小值时,用三角函数代换可巧妙地求解.这里介绍几种求最值时常用的三角函数代换. 1.若|x|≤1,可令x=sinθ. 例1 求函数y=(1-x~2)~(1/x)的最大值和最小值. 解:函数定义域是-1≤x≤1令x=sinθ,θ∈[-π/2,π/2],则(1-x~2)~(1/2)=cosθ,∴ y=sinθcosθ=1/2 sin2θ∴当θ=π/4即x=2~(1/2)/2时,y_(max)=1/2,当θ=-π/4即 x=-2~(1/2)/2时,y_(max)=-1/2.  相似文献   

2.
1 .利用配方法化成只含有一个的三角函数【例 1】 求函数y =sin6 x +cos6 x的最值 .解 :y =sin6 x +cos6 x=(sin2 x +cos2 x) (sin4 x -sin2 xcos2 x +cos4 x)=(sin2 x+cos2 x) 2 -3sin2 xcos2 x=1-3sin2 xcos2 x =1-34 sin2 2x=58+ 38cos4x∴当x=kπ2 (k∈z)时 ,y取最大值为 1.当x=kπ2 + π4(k∈z)时 ,y取最小值 14∴ymax =1,ymin =142 .利用函数y =x+ ax(a >0 )的单调性【例 2】 求函数y =sin2 x + 3sin2 x(x≠kπ ,k∈z)的值域 .解 :设sin2 x =t(0 相似文献   

3.
一、纯粹利用判别式求函数y=ax~2+bx+c/mx~2+nx+l值域的可靠性。 [例1]求函数y=5/2x~2+5x+3的值域。解:把原式变形成2yx~2+5yx+3y-5=0 ①∵ x为实数:△=(5y)~2-4(2y)(3y-5)≥0 解得 y≥0或y≤-40 即所求值域为:{y∶y≥0}∪{y∶y≤-40}。但由原函数显然可知y≠0,所以上面求得的值域并不可靠。 [例2]求函数y=x~2-x-2/2x~2-6x+4的值域。解:把原式变形成 (2y-1)x~2+(1-6y)x+4y+2=0 ②∵ x为实数,∴△=(1-6y)~2-4(2y-1)(4y+2)=(2y-3)~2≥0 ∵所求值域为y∈R事实上,y=(x~2-x-2)/(2x~2-6x+4)=((x-2)(x+1))/(2(x-2)(x-1))  相似文献   

4.
求函数y=x·(1-x2)~(1/2)(0相似文献   

5.
用三角换元法证明不等式是基本方法,根据题意恰当地进行换元,则可使问题快速获解,达到事半功倍的效果.例1设点P(x,y)是圆x~2+(y-1)~2= 1上任意一点,若总有x+y+c≥0,试求c的取值范围.解因为点P(x,y)在圆x~2+(y-1)~2= 1上,故可设x=cosθ,y=1+sinθ,则x+y+c=cosθ+sinθ+1+c≥0恒成立,  相似文献   

6.
一、构造函数例1设α、m为常数,θ是任意实数,求证:眼cos(θ+α)+mcosθ演2≤1+2mcosα+m2.证明构造函数y=f(θ)=1+2mcosα+m2-眼cos(θ+α)+mcosθ演2,则只需证明y≥0即可.f(θ)=sin2(θ+α)+2m眼cosα-cosθcos(θ+α)演+m2sin2θ.令sin(θ+α)=x,则得二次函数y=x2+2msinθ·x+m2sin2θ.由于Δ=4m2sin2θ-4m2sin2θ=0,且二次项系数为1,故y≥0,即原不等式成立.二、构造数列例2已知:sinφcosφ=60169,π4<φ<π2,求sinφ、cosφ的值.解由题意可知,sinφcosφ=(215姨13)2且sinφ>cosφ,构造等比数列cosφ,215姨13,sinφ.设sinφ=215姨13·q,c…  相似文献   

7.
每期一题     
题:若:a、b、c为正数,试求函数y=(x~2+a~2)~(1/2)+((c-x)~2+b~2)~(1/2)的极小值。解法一复数法运用代数中学过的复数模不等式 |z_1|+|z_2|≥|z_1+z_2|。设 z_1=x+ai x_2=(c-x)+bi ∴|z_1|=(x~2+a~2)~(1/2) |z_2|=((c-x)~2+b~2)~(1/2) ∵|z_1|+|z_2|≥|z_1+z_2| ∴y=|z_1|+|z_2|≥|z_1+z_2| =|x+ai+c-x+bi| =|c+(a+b)i|=(c~2+(a+b)~2)~(1/2) ∴y_min=(c~2+(a+b)~2)~(1/2)。解法二代数法运用不等式(x_1~2+y_1~2)~(1/2)+(x_2~2+y_2~2)~(1/2)≥((x_1+x_2)~2+(y_1+y_2)~2)~(1/2)其中等号仅当x_1/x_2=y_1/y_2时成立。∴y=(x~2+a~2)~(1/2)+((c-x)~2+b~2)~(1/2)  相似文献   

8.
一、三角函数取值范围的方程求法我们知道在sin~2a+cos~2α=·1中,运用换元,令cosα=x,sinα=y,就是x~2+y2=1.这样就可把求t=F(cosα,sinα)的范围化为在方程组{x~2+y~2}=1F(x,y)=t},中求t的取值范围.例1已知sinαcosβ=1/2,求t=cosαsi的取值范围.解令cosα=x,sinα=y,cosβ=m,sinβ=n,得方程组(?)消去m,n,y(过程略)得4x~4-(4t~2+3)x~2+4t~2=0(0≤x~2≤1)⑤在⑤中解出t~2求值域或解出x~2求定义域或用二次方程实根的分布方法可得0≤t2≤1/4,所以一1/2≤t≤1/2.例2已知sinα+sinβ=1,求t=cosαt+cosβ的取值  相似文献   

9.
在高中数学中,求函数的值域是一种较为复杂的问题,往往方法较为灵活.现举一例,给出多种解法,同学们可从中受到启发.例题求函数y=sinx2-cosx的值域.解法一:(利用三角函数的有界性)去分母化为sinx+ycosx=2y,即y2+1sin(x+φ)=2y.因为|sin(x+φ)|≤1,所以|2y|≤y2+1,即3y2≤1.解得值域是[-33,33].解法二:(利用解析几何方法)函数变形为:y=0-(-sinθ)2-cosθ.联想到斜率公式,(如图1)可知y是连结A(2,0)与圆x2+y2=1上的点(cosθ,-sinθ)的斜率.所求值域就是这斜率的取值范围.设AB,AC为两切线,它们的斜率分别是-33,33.所以值域是[-33,33].解法三:(…  相似文献   

10.
有些数学题.如果直接从条件到结论用定势思维去探求解题途径比较困难时,可以根据题设及其特点,构造出复数,从而得到独特的解题方法,使问题化难为易.例1 求函数 f(x)=(9 x~2)~(1/2) ((4 (5-x~2)))~(1/2)的值域.分析:可将根式的问题,通过构造复数化成模的有关问题.解:构造复数 z_1=3 xi,z_2=2 (5-x)i则 f(x)=(?)|z_1| |z_2|≥|z_1 z_2|=|3 xi 2 (5-x)i|  相似文献   

11.
在角θ的终边上任取一点M(x,y),设点M到原点的距离为r(r=(x2+y2)~(1/2)),其中四个比值叫做θ的三角函数:sinθ:y/r,cosθ=  相似文献   

12.
[例1]:求函数y=sinθ(1+2cosθ)的最大值。解:不妨限制0≤θ≤π/2,于是: y=sinθ(1+2cosθ)A为待定正常数1/A (Asinθ)(1+2cosθ)  相似文献   

13.
现行全日制普通中学数学教科书 (试验修订本·必修 )第二册 (上 )第七章“直线和圆的方程”中有这样一道习题 :求函数 f (θ) =sinθ- 1cosθ- 2 的最大值和最小值 .编者把此题放在这里 ,意图十分明显 ,就是可把 f (θ) =sinθ- 1cosθ- 2 看成是定点 ( 2 ,1 )与单位圆 x2 + y2= 1上的动点 ( cosθ,sinθ)连线的斜率 ,从而问题转化为求斜率的最大值和最小值 .笔者由此得到启发 ,对动点在常见曲线上的“分式三角函数”的最值问题作如下探讨 ,供教与学中参考 .1 构造直线例 1 求 y=3sin x- 1sin x+ 2 的最值 .分析 因为 y=3sin x- 1sin x- …  相似文献   

14.
利用圆心到直线的距离d与圆的半径r的大小关系,可以求有关三角题的值域、最值、角的大小、判断三角形形状、证明三角不等式以及求参数的取值范围等问题. 1.求值域 例1 求函数u=(1-sinα)/(2 cosα)的值域. 解 因为 u=(1-sinα)/(2 cosα)可化为 sinα ucosα 2u-1=0.所以点(sinα,cosα)既在直线 x uy 2u-1=0上,又在圆x2 y2=1上,于是必有 |2u-1|/((1 u2)~(1/2))≤1,  相似文献   

15.
文献[1]在对一道分式函数值域的错解进行纠错时,不慎又给出了一个错误答案.摘录如下:问题求函数 y=(1-x~2)~(1/2)/(2 x)的值域.错解原式变形为(x 2)y=(1-x~2)~(1/2),两边平方整理得(y~2 1)x~2 4y~2x 4y~2-1=0,因为 y~2 1>0且 x 是实数,所以△=16y~4-4(y~2 1)(4y~2-1)≥0,从而|y|≤1/3~(1/2),即原函数的值域是[-(3~(1/2)),3~(1/2)].剖析原函数在化为整式及去根号时,扩大了定义域,从而扩大了函数的值域.解因为函数的定义域为-1≤x≤1,所以 x 2>0,可得0≤((1-x~2)~(1/2))/(x 2)≤1/2.当 x=±1时,左端等号成立;当 x=0时,右端等号成立,所以函数的值域为[0,1/2].在高中数学教学中,常遇到一些分式函数的值域求解问题.学生的解题错误率较高,有的甚至感觉  相似文献   

16.
贵刊2000年第11期第34页介绍了函数y(ac<0)值域的一种三角换元求法.但笔者认为,过程不简,运算量大,可改进为如下三角换元. 容易证明:若0≤x≤π/2,则 (1)当0<θ≤π/4时,sinθ≤sin(x+θ)≤1; (2)当π/4<θ<π/2时,cosθ≤sin(x+θ)≤1. 例1 求函数的值域. 解:所给函数化为  相似文献   

17.
1.若遇a≤x~2 y~2≤b(a,b∈R~ ),可作代换x=t·cosφ,y=tsinφ,其中a~(1/2)≤t≤b~(1/2) 例1 已知1≤x~2 y~2≤2,求w=x~2 xy y~2的最值. 解:∵1≤x~2 y~2≤2,∴设x=tcosθ,y=tsinθ,其中1≤t≤2~(1/2),∴w=t~2cos~2θ t~2cosθsinθ t~2sin~2θ=t~2·(1 (1/2)sin2θ),而(1/2)≤1 sin2θ≤(3/2),∴(1/2)≤w≤3. 2.若遇b~2x~2 a~2y~2=a~2b~2(a,b∈R~ ),可作代换x=acosθ,y=bsinθ(此处要注意解析几何中椭圆、双曲线的参数方程的应用) 例2 已知x、y满足x~2 4y~2=4,求w=x~2 2xy 4y~2 x 2y的最值.  相似文献   

18.
在曲线的极坐标方程化到曲线的直角坐标方程时,常用到ρ~2=x~2+y~2。故ρ=±(x~2+y~2)~(1/2)。怎样确定“+”、“-”号?现在举例说明如下: 1.用ρ=(x~2+y~2)~(1/2)的情况。例1.化极坐标方程e~ρ=2+cosθ为直角坐标方程。解.因为2+cosθ≥1,所以原方程中ρ≥0,因此ρ=(x~2+y~2)~(1/2)。由e~ρ=2+cosθ得ρe~ρ=2ρ+ρcosθ。从而原方程可化为 (x~2+y~2)~(1/2)e~((x~2+y~2)~(1/2))=2(x~2+y~2)~(1/2)+x。例2.把极坐标方程ρ=1+cosθ化为直角坐标方程。  相似文献   

19.
求函数f(x,y)=x~2 y~2在条件x y=1下的最小值,通常有如下几种解法: 解法一 应用一元函数的配方法 由条件x十y=1,得y=1—x,将其代入f(x,y)=x~2 y~2,得到一元函数 f(x)=x~2 (1—x)~2=2x~2-2x 1=2(x-1/2)~2 1/2(1)因为(x-1/2)~2≥0,故由(1)式知,当x=1/2时,函数f(x)取最小值。将x=1/2代入y-1—x,得y=1/2。因此,当x=1/2,y=1/2时,函数f(x,y)-x~2 y~2在条件x y=1下取最小值(1/2)~2  相似文献   

20.
【例1】 求函数 y=lg(8sinx+14x-1π-6cosx+14x-1π)的 值域. 错解:令x+14x-1π=θ,则 y=lg(8sinθ-6cosθ)=lg10sin(θ-φ) ≤lg10=1(其中φ=arctan34),于是函数值 域为(-∞,1]. 辨析:上述解答没有考虑函数 θ=x+14x-1π的反函数存在条件, 故上述解答有误. 正解:上述解法中,因为方程 …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号