首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to evaluate two practical interval training protocols on cardiorespiratory fitness, lipids and body composition in overweight/obese women. Thirty women (mean ± SD; weight: 88.1 ± 15.9 kg; BMI: 32.0 ± 6.0 kg · m2) were randomly assigned to ten 1-min high-intensity intervals (90%VO2 peak, 1 min recovery) or five 2-min high-intensity intervals (80–100% VO2 peak, 1 min recovery) or control. Peak oxygen uptake (VO2 peak), peak power output (PPO), body composition and fasting blood lipids were evaluated before and after 3 weeks of training, completed 3 days per week. Results from ANCOVA analyses demonstrated no significant training group differences for any primary variables (P > 0.05). When training groups were collapsed, 1MIN and 2MIN resulted in a significant increase in PPO (?18.9 ± 8.5 watts; P = 0.014) and time to exhaustion (?55.1 ± 16.4 s; P = 0.001); non-significant increase in VO2 peak (?2.36 ± 1.34 ml · kg?1 · min?1; P = 0.185); and a significant decrease in fat mass (FM) (??1.96 ± 0.99 kg; P = 0.011). Short-term interval exercise training may be effective for decreasing FM and improving exercise tolerance in overweight and obese women.  相似文献   

2.
Purpose: To evaluate whether excess body mass influences the heart rate variability (HRV) indexes at rest, and to correlate adiposity indicators and the aerobic fitness with cardiac autonomic variables in metabolically healthy young adults. Method: In all, 41 untrained males (Mage = 21.80, SD = 2.14 years), 14 normal weight (MBMI = 22.28, SD = 1.86 kg?m?2), 11 overweight (MBMI = 26.95, SD = 1.43 kg?m?2), and 16 obese (MBMI = 33.58, SD = 3.06 kg?m?2) metabolically healthy (normal values of blood pressure, fasting blood glucose, triglycerides, and total cholesterol), underwent evaluations of the HRV at rest and of the peak oxygen consumption (VO2 peak) during maximal exercise on a cycle ergometer. Results: Blood pressure, heart rate, HRV indexes, casual blood glucose, oxidative stress, and antioxidant activity did not differ among the groups. The VO2 peak (mL?kg?1?min?1) was lower in the obese group compared with the normal weight and overweight groups. The body mass (r = ?.40 to ?.45) and abdominal circumference (r = ?.39 to ?.52) were slightly to moderately correlated with SD1, SD2, RMSSD, SDNN, pNN50, LF, and HF indexes and total power. The VO2 peak (mL?kg?1?min?1) was slightly to moderately correlated (r = .48 to .51) with SD2, SDNN, and LF indexes in the individuals with excess body mass. Conclusion: Cardiac autonomic modulation at rest was preserved in metabolically healthy obese young men. However, the indicators of adiposity, as well as the aerobic fitness were correlated with cardiac autonomic modulation in the individuals with excess body mass.  相似文献   

3.
A popular algorithm to predict VO2Peak from the one-mile run/walk test (1MRW) includes body mass index (BMI), which manifests practical issues in school settings. The purpose of this study was to develop an aerobic capacity model from 1MRW in adolescents independent of BMI. Cardiorespiratory endurance data were collected on 90 adolescents aged 13–16 years. The 1MRW was administered on an outside track and a laboratory VO2Peak test was conducted using a maximal treadmill protocol. Multiple linear regression was employed to develop the prediction model. Results yielded the following algorithm: VO2Peak = 7.34 × (1MRW speed in m s?1) + 0.23 × (age × sex) + 17.75. The New Model displayed a multiple correlation and prediction error of R = 0.81, standard error of the estimate = 4.78 ml kg?1·min?1, with measured VO2Peak and good criterion-referenced (CR) agreement into FITNESSGRAM’s Healthy Fitness Zone (Kappa = 0.62; percentage agreement = 84.4%; Φ = 0.62). The New Model was validated using k-fold cross-validation and showed homoscedastic residuals across the range of predicted scores. The omission of BMI did not compromise accuracy of the model. In conclusion, the New Model displayed good predictive accuracy and good CR agreement with measured VO2Peak in adolescents aged 13–16 years.  相似文献   

4.
Abstract

The aim of this study was to evaluate the physiological effects of soccer and Zumba among female hospital employees during a 40-week intervention period. Hospital employees (n = 118) were cluster-randomised to either a soccer group (n = 41), a Zumba group (n = 38) or a control group (n = 39). Both training groups were encouraged to perform 1-h training sessions twice a week outside working hours throughout the 40 weeks. Maximal oxygen uptake (VO2 max), blood pressure and body composition were measured and blood samples collected before and after the intervention period. Using intention-to-treat analyses, the Zumba group improved VO2 max compared to the control group (2.2 mL · kg?1 · min?1, 95% CI, 0.9, 3.5, = 0.001), with no significant increase in the soccer group (1.1 mL · kg?1 · min?1, 95% CI, ?0.2, 2.4, = 0.08). Both intervention groups reduced total body fat mass and fat percentage compared to the control group (P < 0.01). In the soccer group, but not the Zumba group, a significant difference in lower limb bone mineral density and bone mineral content was observed in comparison to the control group (P < 0.01). Furthermore, the soccer group, but not the Zumba group, had increased plasma osteocalcin (6.6 µg · L?1, 95% CI, 2.2, 11.0, P < 0.01) and decreased plasma leptin (?6.6 µg · L?1, 95% CI, ?12.5, ?0.7, P < 0.05) compared to the control group. The present study suggests that workplace-initiated soccer and Zumba training comprising 1–2 sessions per week outside working hours may promote physiological health among female hospital employees.  相似文献   

5.
Research from several countries has documented a decline in physical activity (PA) levels and in participation in organized sport with increasing age, indicating that organized sport may be of importance to adolescents’ cardiorespiratory fitness (CRF). Purpose: The purpose of this study was to examine how regular participation in organized and unorganized PA affected the development of adolescents’ CRF (peak oxygen consumption [VO2peak]), when controlled for sex interaction. Method: Data on direct measures of VO2peak and participation in organized PA among adolescents organized into 3 groups (participation in organized sport, participation in unorganized PA, and no weekly PA) were collected from 76 students (39 boys and 37 girls), when they were aged 14 and 19 years old. Results: Statistically significant differences were found between VO2peak values in the 3 groups at both 14 years of age, F(2, 73) = 7.16, p < .05, ?2 = .170, and 19 years of age, F(2, 73) = 14.00, p < .05, ?2 = .300, independent of sex at both 14 and 19 years of age, F(2, 73) = 0.05, p > .05, ?2 = .02, and F(2, 73) = 0.05, p > .05, ?2 = .00. Adolescents participating in organized sport also had statistically significantly higher VO2peak values than adolescents participating in unorganized PA and those with no weekly PA, at both 14 and 19 years of age. Conclusion: From a health perspective, in terms of CRF, the findings highlight the importance of encouraging adolescents to participate in organized sport and to refrain from dropping out of organized sport programs.  相似文献   

6.
This study aimed to identify attributes that discriminate selected from non-selected players and predict selection into a rugby league development programme in older adolescent players. Anthropometric, performance and psychological attributes were measured in under-16 (N = 100) and under-18 (N = 60) rugby league players trialling for selection into a development programme with a professional Australian club. Sprint times (P < 0.001), predicted VO2max (P = 0.002) and push-ups1 min (P = 0.004) were superior in selected under-16 players, and sprint times (P ≤ 0.045), push-ups1 min (P < 0.001) and chin-ups1 min (P = 0.013) were superior in selected under-18 players. Further, 10-m sprint (β = ?7.706, standard error [SE] = 2.412), VO2max (β = 0.168, SE = 0.052) and body mass (β = 0.071, SE = 0.023) significantly predicted selection (R2 = 0.339) in under-16 players, while push-ups1 min (β = 0.564, SE = 0.250), 10-m sprint (β = ?68.477, SE = 28.107), body mass (β = 0.360, SE = 0.155) and chronological age (β = ?3.577, SE = 1.720) significantly predicted selection (R2 = 0.894) in under-18 players. These findings emphasise the importance of performance attributes in junior rugby league and indicate talent identification test batteries should be age-specific in older adolescent players.  相似文献   

7.
Although high levels of sitting time are adversely related to health, it is unclear whether moving from sitting to standing provides a sufficient stimulus to elicit benefits upon markers of chronic low-grade inflammation in a population at high risk of type 2 diabetes (T2DM). Three hundred and seventy two participants (age = 66.8 ± 7.5years; body mass index (BMI) = 31.7 ± 5.5kg/m2; Male = 61%) were included. Sitting, standing and stepping was determined using the activPAL3TM device. Linear regression modelling employing an isotemporal substitution approach was used to quantify the association of theoretically substituting 60 minutes of sitting per day for standing or stepping on interleukin-6 (IL-6), C-reactive protein (CRP) and leptin. Reallocating 60 minutes of sitting time per day for standing was associated with a ?4% (95% CI ?7%, ?1%) reduction in IL-6 (p = 0.048). Reallocating 60 minutes of sitting time for light stepping was also associated with lower IL-6 levels (?28% (?46%, ?4%; p = 0.025)). Substituting sitting for moderate-to-vigorous (MVPA) stepping was associated with lower CRP (?41% (?75%, ?8%; p = 0.032)), leptin (?24% (?34%, ?12%; p ≤ 0.001)) and IL-6 (?16% (?28%, 10%; p = 0.036). Theoretically replacing 60 minutes of sitting per day with an equal amount of either standing or stepping yields beneficial associations upon markers of chronic-low grade inflammation.  相似文献   

8.
Participation in youth sport is assumed to promote and contribute towards more physically active lifestyles among children and adolescents. The aim of this study was to examine inter-participant variability in objectively measured habitual physical activity (PA) behaviours and sedentary time among youth sport participants and their implications for health. One-hundred-and-eighteen male youth sport footballers (Mean ± s = 11.72 ± 1.60) wore a GT3X accelerometer for 7 days. Average daily PA [min · day?1, in light (LPA), moderate (MPA), vigorous (VPA) and combined moderate-to-vigorous (MVPA)] and sedentary time were calculated. Participants’ body mass index adjusted for age and sex (BMI–standard deviation score), per cent body fat (BF%), waist circumference and cardiorespiratory fitness were assessed. Results revealed that variability in daily PA behaviours and sedentary time (min · day?1) was associated with BMI–standard deviation score [VPA (?), MVPA (?)], BF% [sedentary time (+), VPA (?), MVPA (?)], waist circumference [sedentary time (+), LPA (?)] and cardiorespiratory fitness [sedentary time (?), MPA (+), VPA (+), MVPA (+)]. Whilst sedentary time and MVPA were not related to health outcomes independent of one another, associations with markers of adiposity and cardiorespiratory fitness were stronger for sedentary time. Sedentary time was also significantly positively related to waist circumference independent of VPA. Results demonstrate inter-participant variability in habitual PA and sedentary time among youth sport participants which holds implications for their health. Thus, promoting PA and, in particular, reducing sedentary time may contribute towards the prevention of adverse health consequences associated with a physically inactive lifestyle for children and adolescents active in the youth sport context.  相似文献   

9.
The aim of this study was to investigate the effects of sodium bicarbonate (NaHCO3) on 4 km cycling time trial (TT) performance when individualised to a predetermined time to peak blood bicarbonate (HCO3?). Eleven male trained cyclists volunteered for this study (height 1.82 ± 0.80 m, body mass (BM) 86.4 ± 12.9 kg, age 32 ± 9 years, peak power output (PPO) 382 ± 22 W). Two trials were initially conducted to identify time to peak HCO3? following both 0.2 g.kg?1 BM (SBC2) and 0.3 g.kg?1 BM (SBC3) NaHCO3. Thereafter, on three separate occasions using a randomised, double-blind, crossover design, participants completed a 4 km TT following ingestion of either SBC2, SBC3, or a taste-matched placebo (PLA) containing 0.07 g.kg?1 BM sodium chloride (NaCl) at the predetermined individual time to peak HCO3?. Both SBC2 (?8.3 ± 3.5 s; p < 0.001, d = 0.64) and SBC3 (?8.6 ± 5.4 s; p = 0.003, d = 0.66) reduced the time to complete the 4 km TT, with no difference between SBC conditions (mean difference = 0.2 ± 0.2 s; p = 0.87, d = 0.02). These findings suggest trained cyclists may benefit from individualising NaHCO3 ingestion to time to peak HCO3? to enhance 4 km TT performance.  相似文献   

10.
This prospective study determined whether: (1) objective physical activity (PA) and sedentary (SED) time at 9 years was associated with cognition at 15 years, (2) cognition at 9 years was associated with PA and SED at 15 years, and (3) the change in PA and SED from 9 to 15 years was associated with the change in cognition. Cognitive performance was assessed from picture vocabulary, verbal analogy, passage comprehension, and applied problem tasks. Regression models were used to explore each aim while adjusting for covariates. Among the combined sample, SED (min· day?1) at 9 years was unrelated with cognitive performance at 15 years, whereas participating in ≥ 60 min· day?1 of moderate-to-vigorous PA (MVPA) at 9 years predicted lower cognitive scores at 15 years. In the reverse direction, cognitive performance at 9 years was unrelated with SED and MVPA (min· day?1) at 15 years. Over 6 years, increased SED (min· day?1) predicted lower improvement to verbal analogy scores (B = ?0.01, p = 0.028). In comparison, an increase (or relatively smaller decline) in MVPA (min· day?1) predicted greater improvement in applied problem scores (B = 0.06, p = 0.007). Contextual information regarding SED and MVPA behavior would help understand bi-directional associations of activity and cognition.  相似文献   

11.
High Intensity Interval Training (HIIT) can be performed with different effort to rest time-configurations, and this can largely influence training responses. The purpose of the study was to compare the acute physiological responses of two HIIT and one moderate intensity continuous training (MICT) protocol in young men. A randomised cross-over study with 10 men [age, 28.3?±?5.5years; weight, 77.3?±?9.3?kg; height, 1.8?±?0.1?m; peak oxygen consumption (VO2peak), 44?±?11?mL.kg?1.min?1]. Participants performed a cardiorespiratory test on a treadmill to assess VO2peak, velocity associated with VO2peak (vVO2peak), peak heart rate (HRpeak) and perceived exertion (RPE). Then participants performed three protocols equated by distance: Short HIIT (29 bouts of 30s at vVO2peak, interspersed by 30s of passive recovery, 29?min in total), Long HIIT (3 bouts of 4?min at 90% of vVO2peak, interspersed by 3?min of recovery at 60% of vVO2peak, 21?min in total) and MICT (21?min at 70% of vVO2peak). The protocols were performed in a randomised order with ≥48 h between them. VO2, HRpeak and RPE were compared. VO2peak in Long HIIT was significantly higher than Short HIIT and MICT (43?±?11 vs 32?±?8 and 37?±?8?mL.kg?1.min?1, respectively, P?P?P?2, HR and RPE than Short HIIT and MICT, suggesting a higher demand on the cardiorespiratory system. Short HIIT and MICT presented similar physiologic and perceptual responses, despite Short HIIT being performed at higher velocities.  相似文献   

12.
Carbohydrate (CHO) availability during endurance exercise seems to attenuate exercise-induced perturbations of cellular homeostasis and might consequently diminish the stimulus for training adaptation. Therefore, a negative effect of CHO intake on endurance training efficacy seems plausible. This study aimed to test the influence of carbohydrate intake on the efficacy of an endurance training program on previously untrained healthy adults. A randomized cross-over trial (8-week wash-out period) was conducted in 23 men and women with two 8-week training periods (with vs. without intake of 50g glucose before each training bout). Training intervention consisted of 4x45 min running/walking sessions/week at 70% of heart rate reserve. Exhaustive, ramp-shaped exercise tests with gas exchange measurements were conducted before and after each training period. Outcome measures were maximum oxygen uptake (VO2max) and ventilatory anaerobic threshold (VT). VO2max and VT increased after training regardless of CHO intake (VO2max: Non-CHO 2.6 ± 3.0 ml*min?1*kg?1 p = 0.004; CHO 1.4 ± 2.5 ml*min?1*kg?1 p = 0.049; VT: Non-CHO 4.2 ± 4.2 ml*min?1*kg?1 p < 0.001; CHO 3.0 ± 4.2 ml*min?1*kg?1 p = 0.003). The 95% confidence interval (CI) for the difference between conditions was between +0.1 and +2.1 ml*min?1*kg?1 for VO2max and between ?1.2 and +3.1 for VT. It is concluded that carbohydrate intake could potentially impair the efficacy of an endurance training program.  相似文献   

13.
To examine the reliability and validity of 1-mile walk tests for estimation of aerobic fitness (VO2max) in 10- to 13-year-old children and to cross-validate previously published equations. Participants (= 61) walked 1-mile on two different days. Self-reported physical activity, demographic variables, and aerobic fitness were used in multiple regression analyses. Eight models were developed with various combinations of predictors. The recommended model for fitness testing in schools was: VO2max = 120.702 + (4.114 × Sex [F = 0, M = 1]) – (2.918 × 1-mile Walk Time [min]) – (2.841 × Age), = .73, standard error of estimate = 6.36 mL·kg?1·min?1. Cross-validation of previously published equations demonstrated lower correlations with measured VO2max than the newly developed walk tests. Evidence of reliability and validity for 1-mile walk tests to estimate VO2max in young children was provided. The model that included 1-mile walk time, age, and sex may be appropriate for youth fitness testing in physical education, particularly for unmotivated or overweight young children.  相似文献   

14.
Dynamic sitting, such as fidgeting and desk work, might be associated with health, but remains difficult to identify out of accelerometry data. We examined, in a laboratory study, whether dynamic sitting can be identified out of triaxial activity counts. Among 18 participants (56% men, 27.3 ± 6.5 years), up to 236 counts per minute were recorded in the anteroposterior and mediolateral axes during dynamic sitting using a hip-worn accelerometer. Subsequently, we examined in 621 participants (38% men, 80.0 ± 4.7 years) from the AGES-Reykjavik Study whether dynamic sitting was associated with cardio-metabolic health. Compared to participants who recorded the fewest dynamic sitting minutes (Q1), those with more dynamic sitting minutes had a lower BMI (Q2 = ?1.39 (95%CI = ?2.33;–0.46); Q3 = ?1.87 (?2.82;–0.92); Q4 = ?3.38 (?4.32;–2.45)), a smaller waist circumference (Q2 = ?2.95 (?5.44;–0.46); Q3 = ?3.47 (?6.01;–0.93); Q4 = ?8.21 (?10.72;–5.71)), and a lower odds for the metabolic syndrome (Q2 = 0.74 [0.45;1.20] Q3 = 0.58 [0.36;0.95]; Q4 = 0.36 [0.22;0.59]). Our findings suggest that dynamic sitting might be identified using accelerometry and that this behaviour was associated with health. This might be important given the large amounts of time people spend sitting. Future studies with a focus on validation, causation and physiological pathways are needed to further examine the possible relevance of dynamic sitting.  相似文献   

15.
Abstract

The aim was to investigate performance variables and indicators of cardiovascular health profile in elderly soccer players (SP, n = 11) compared to endurance-trained (ET, n = 8), strength-trained (ST, n = 7) and untrained (UT, n = 7) age-matched men. The 33 men aged 65–85 years underwent a testing protocol including measurements of cycle performance, maximal oxygen uptake (VO2max) and body composition, and muscle fibre types and capillarisation were determined from m. vastus lateralis biopsy. In SP, time to exhaustion was longer (16.3 ± 2.0 min; P < 0.01) than in UT (+48%) and ST (+41%), but similar to ET (+1%). Fat percentage was lower (P < 0.05) in SP (–6.5% points) than UT but not ET and ST. Heart rate reserve was higher (P < 0.05) in SP (104 ± 16 bpm) than UT (+21 bpm) and ST (+24 bpm), but similar to ET (+2 bpm), whereas VO2max was not significantly different in SP (30.2 ± 4.9 ml O2 · min?1 · kg?1) compared to UT (+14%) and ST (+9%), but lower (P < 0.05) than ET (?22%). The number of capillaries per fibre was higher (P < 0.05) in SP than UT (53%) and ST (42%) but similar to ET. SP had less type IIx fibres than UT (?12% points). In conclusion, the exercise performance and cardiovascular health profile are markedly better for lifelong trained SP than for age-matched UT controls. Incremental exercise capacity and muscle aerobic capacity of SP are also superior to lifelong ST athletes and comparable to endurance athletes.  相似文献   

16.
ABSTRACT

During 20 m shuttle tests, obese adolescents may have difficulty achieving maximum cardiorespiratory performance due to the presence of braking-relaunch phases (BRP). Nineteen obese adolescents aged 15.2 ± 1.5 years (body mass index [BMI] = 39.7 ± 5.9 kg.m?2) performed three graded walking exercises on a 50 m track at speeds between 3 and 6 km/h: a continuous-straight-line protocol (C), a continuous protocol that required turning back every 30 sec (C-BRP) and an intermittent protocol that consisted of successively walking then resting for 15 sec (15–15). Oxygen uptake (VO2), aerobic cost of walking (Cw), ventilation (VE) and rating of perceived exertion (RPE) were measured at each stage during the protocols. During C-BRP, the responses were not significantly higher compared with C (p > 0.30). During 15–15, the VO2, Cw and VE were ~ 15 to 25% lower than during C beginning at 4 km/h (p < 0.05). In obese adolescents, the respiratory impact of sudden directional changes during the 20 m shuttle-type test appeared to be minor at walking speeds. During the 15–15 test, the intensity increases more progressively, and this design may encourage obese adolescents to walk further than during a continuous test.  相似文献   

17.
The present investigation was performed to elucidate if the non-erythropoietic ergogenic effect of a recombinant erythropoietin treatment results in an impact on skeletal muscle mitochondrial and whole body fatty acid oxidation capacity during exercise, myoglobin concentration and angiogenesis. Recombinant erythropoietin was administered by subcutaneous injections (5000 IU) in six healthy male volunteers (aged 21 ± 2 years; fat mass 18.5 ± 2.3%) over 8 weeks. The participants performed two graded cycle ergometer exercise tests before and after the intervention where VO2max and maximal fat oxidation were measured. Biopsies of the vastus lateralis muscle were obtained before and after the intervention. Recombinant erythropoietin treatment increased mitochondrial O2 flux during ADP stimulated state 3 respiration in the presence of complex I and II substrates (malate, glutamate, pyruvate, succinate) with additional electron input from β-oxidation (octanoylcarnitine) (from 60 ± 13 to 87 ± 24 pmol · s?1 · mg?1 P < 0.01). β-hydroxy-acyl-CoA-dehydrogenase activity was higher after treatment (P < 0.05), whereas citrate synthase activity also tended to increase (P = 0.06). Total myoglobin increased by 16.5% (P < 0.05). Capillaries per muscle area tended to increase (P = 0.07), whereas capillaries per fibre as well as the total expression of vascular endothelial growth factor remained unchanged. Whole body maximal fat oxidation was not increased after treatment. Eight weeks of recombinant erythropoietin treatment increases mitochondrial fatty acid oxidation capacity and myoglobin concentration without any effect on whole body maximal fat oxidation.  相似文献   

18.
Low energy availability, defined as low caloric intake relative to exercise energy expenditure, has been linked to endocrine alterations frequently observed in chronically energy-deficient exercising women. Our goal was to determine the endocrine effects of low energy availability in exercising men. Six exercising men (VO2peak: 49.3 ± 2.4 ml · kg?1 · min?1) underwent two conditions of low energy availability (15 kcal · kg?1 fat-free mass [FFM] · day?1) and two energy-balanced conditions (40 kcal · kg?1 FFM · day?1) in randomised order. During one low energy availability and one balanced condition, participants exercised to expend 15 kcal · kg?1 FFM · day?1; no exercise was conducted during the other two conditions. Metabolic hormones were assessed before and after each 4-day period. Following both low energy availability conditions, leptin (?53% to ?56%) and insulin (?34% to ?38%) were reduced (P < 0.05). Reductions in leptin and insulin were independent of whether low energy availability was attained with or without exercise (P > 0.80). Low energy availability did not significantly impact ghrelin, triiodothyronine, testosterone and IGF-1 (all P > 0.05). The observed reductions in leptin and insulin were in the same magnitude as changes previously reported in sedentary women. Further research is needed to understand why other metabolic hormones are more robust against low energy availability in exercising men than those in sedentary and exercising women.  相似文献   

19.
This study adopted a multidimensional approach to performance prediction within Olympic distance cross-country mountain biking (XCO-MTB). Twelve competitive XCO-MTB cyclists (VO2max 60.8 ± 6.7 ml · kg?1 · min?1) completed an incremental cycling test, maximal hand grip strength test, cycling power profile (maximal efforts lasting 6–600 s), decision-making test and an individual XCO-MTB time-trial (34.25 km). A hierarchical approach using multiple linear regression analyses was used to develop predictive models of performance across 10 circuit subsections and the total time-trial. The strongest model to predict overall time-trial performance achieved prediction accuracy of 127.1 s across 6246.8 ± 452.0 s (adjusted R2 = 0.92; P < 0.01). This model included VO2max relative to total cycling mass, maximal mean power across 5 and 30 s, peak left hand grip strength, and response time for correct decisions in the decision-making task. A range of factors contributed to the models for each individual subsection of the circuit with varying predictive strength (adjusted R2: 0.62–0.97; P < 0.05). The high prediction accuracy for the total time-trial supports that a multidimensional approach should be taken to develop XCO-MTB performance. Additionally, individual models for circuit subsections may help guide training practices relative to the specific trail characteristics of various XCO-MTB circuits.  相似文献   

20.
The purpose of this study was to evaluate the validity of prediction equations for estimating maximal oxygen uptake (VO2peak) based on the PACER test and different adiposity indicators in Mexican youth. A convenience sample of youth aged 9–18 years from schools in Mexico City was recruited. VO2peak was evaluated with a laboratory exercise test on a treadmill and using a gas analyser and with the 20-m PACER test guidelines. The sample was randomly divided to develop new equations (n = 220) and to evaluate their validity (n = 106). Prediction equations of VO2peak were developed using multiple linear regression models. The adiposity indicators were BMI, waist circumference and body fat. The validity of the new and previously published equations was evaluated based on linear regression models, intra-class coefficient, Akaike’s information criterion, mean absolute percentage error and Bland-Altman graphs. Equations with waist circumference and body fat performed better than those with BMI and without any anthropometric indicator. The accuracy of the developed equations (R2 = 57.0%–59.50%) was higher than that of previously published equations (R2 = 24.1%–56.0%). The new equations had lower bias in estimating VO2peak. In Mexican youth, the estimation of VO2peak from the 20-m PACER test is more accurate after including waist circumference or body fat than with BMI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号