首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
BackgroundBiohydrogen effluent contains a high concentration of volatile fatty acid (VFA) mainly as butyric, acetic, lactic and propionic acids. The presence of various VFAs (mixture VFAs) and their cooperative effects on two-stage biohythane production need to be further studied. The effect of VFA concentrations in biohydrogen effluent of palm oil mill effluent (POME) on methane yield in methane stage of biohythane production was investigated.ResultsThe methane yield obtained in low VFA loading (0.9 and 1.8 g/L) was 15–20% times greater than that of high VFA loading (3.6 and 4.7 g/L). Butyric acid at high concentrations (8 g/L) has the individual significantly negative effect the methane production process (P < 0.05). Lactic, acetic and butyric acid mixed with propionic acid at a concentration higher than 0.5 g/L has an interaction significantly negative effect on the methanogenesis process (P < 0.05). Inhibition condition had a negative effect on both bacteria and archaea with inhibited on Geobacillus sp., Thermoanaerobacterium thermosaccharolyticum, Methanoculleus thermophilus and Methanothermobacter delfuvii resulting in low methane yield.ConclusionPreventing the high concentration of butyric acid, and propionic acid in the hydrogenic effluent could enhance methane production in two-stage anaerobic digestion for biohythane production.  相似文献   

3.
BackgroundOrnithine decarboxylase antizyme 1 (OAZ1) is an important regulator of polyamine synthesis and uptake. Our previous studies indicated that high OAZ1 expression in the ovaries of laying geese is responsible for poor egg production. In the present study, the molecular characterization of goose OAZ1 gene was analyzed, as well as the expression profile in various follicular tissues.ResultsAn 873-bp cDNA sequence of the OAZ1 gene (Accession No. KC845302) with a + 1 frameshift site (+ 175T) was obtained. The sequence consisted of a 652-bp two overlapping open reading frames (a putative protein with 216 amino acids). The OAZ domain, OAZ signature and OAZ super family domain were prominent conserved regions among species. As the follicle size increased, OAZ1 abundance showed an increasing trend during follicular development, while it decreased during follicular regression. The level of OAZ1 mRNA expression was the lowest in the fifth largest preovulatory follicle, and was 0.65-fold compared to the small white follicle (P < 0.05). OAZ1 mRNA expression in the largest preovulatory and postovulatory follicle was 2.11- and 2.49-fold compared to the small white follicle, respectively (P < 0.05).ConclusionsThe goose OAZ1 structure confirms that OAZ1 plays an important role in ornithine decarboxylase-mediated regulation of polyamine homeostasis. Our findings provide an evidence for a potential function of OAZ1 in follicular development, ovulation and regression.  相似文献   

4.
BackgroundJuvenile Yoshitomi tilapia is often infected by pathogens and results in low-level survival rate. Bacillus subtilis, as a probiotic, may have beneficial effects on Y. tilapia with compound 1-deoxynojirimycin (DNJ), which has antibacterial activities. The effects of dietary probiotic supplementation on Y. tilapias were evaluated.ResultsJuvenile Y. tilapia was fed with B. subtilis for 56 d. Y. tilapia was infected by Aeromonas hydrophila and survival rate was compared. Dietary B. subtilis increased weight gain rate, specific growth, food conversion ratios and food intake rate of Y. tilapia. The diet improved the cumulative survival rate (CSR) of juvenile Y. tilapia when the concentration of B. subtilis was more than 2.05 × 1010 cfu/kg and CSR reached a maximum rate when the concentration of bacillus was 4.23 × 1010 (P < 0.05). Meanwhile, B. subtilis improved total antioxidant capacity (TAC), spleen index, the activities of serum lysozyme, alkaline phosphatase (ALP), superoxide dismutase (SOD) and catalase (CAT) (P < 0.05). In contrast, B. subtilis reduced serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), malondialdehyde (MDA) and C3 complement (P < 0.05). DNJ was isolated from secondary metabolisms and proved to increase the levels of SOD, CAT and reduce the levels of AST, ALT and MDA at cell levels. After A. hydrophila infection, DNJ prevented the reduction in survival rate of Y. tilapia (P < 0.05).Conclusions1-Deoxynojirimycin from Bacillus subtilis can be used to improve the growth performance of juvenile Y. tilapia by affecting its antioxidant and antibacterial activities.  相似文献   

5.
BackgroundIn the industrial biotechnology, ligninolytic enzymes are produced by single fungal strains. Experimental evidence suggests that co-culture of ligninolytic fungi and filamentous microfungi results in an increase laccase activity. In this topic, only the ascomycete Trichoderma spp. has been studied broadly. However, fungal ligninolytic-filamentous microfungi biodiversity interaction in nature is abundant and poorly studied. The enhancement of laccase and manganese peroxidase (MnP) activities of Trametes maxima as a function of time inoculation of Paecilomyces carneus and under several culture conditions using Plackett–Burman experimental design (PBED) were investigated.ResultsThe highest increases of laccase (12,382.5 U/mg protein) and MnP (564.1 U/mg protein) activities were seen in co-cultures I3 and I5, respectively, both at 10 d after inoculation. This level of activity was significantly different from the enzyme activity in non-inoculated T. maxima (4881.0 U/mg protein and 291.8 U/mg protein for laccase and MnP, respectively). PBED results showed that laccase was increased (P < 0.05) by high levels of glucose, (NH4)2SO4 and MnSO4 and low levels of KH2PO4, FeSO4 and inoculum (P < 0.05). In addition, MnP activity was increased (P < 0.05) by high yeast extract, MgSO4, CaCl2 and MnSO4 concentrations.ConclusionsInteraction between indigenous fungi: T. maximaP. carneus improves laccase and MnP activities. The inoculation time of P. carneus on T. maxima plays an important role in the laccase and MnP enhancement. The nutritional requirements for enzyme improvement in a co-culture system are different from those required for a monoculture system.  相似文献   

6.
7.
BackgroundFermentation process development has been very important for efficient ethanol production. Improvement of ethanol production efficiency from sweet sorghum juice (SSJ) under normal gravity (NG, 160 g/L of sugar), high gravity (HG, 200 and 240 g/L of sugar) and very high gravity (VHG, 280 and 320 g/L of sugar) conditions by nutrient supplementation and alternative feeding regimes (batch and fed-batch systems) was investigated using a highly ethanol-tolerant strain, Saccharomyces cerevisiae NP01.ResultsIn the batch fermentations without yeast extract, HG fermentation at 200 g/L of sugar showed the highest ethanol concentration (PE, 90.0 g/L) and ethanol productivity (QE, 1.25 g/L·h). With yeast extract supplementation (9 g/L), the ethanol production efficiency increased at all sugar concentrations. The highest PE (112.5 g/L) and QE (1.56 g/L·h) were observed with the VHG fermentation at 280 g/L of sugar. In the fed-batch fermentations, two feeding regimes, i.e., stepwise and continuous feedings, were studied at sugar concentrations of 280 g/L. Continuous feeding gave better results with the highest PE and QE of 112.9 g/L and 2.35 g/L·h, respectively, at a feeding time of 9 h and feeding rate of 40 g sugar/h.ConclusionsIn the batch fermentation, nitrogen supplementation resulted in 4 to 32 g/L increases in ethanol production, depending on the initial sugar level in the SSJ. Under the VHG condition, with sufficient nitrogen, the fed-batch fermentation with continuous feeding resulted in a similar PE and increased QP by 51% compared to those in the batch fermentation.  相似文献   

8.
BackgroundThe salivary glands of Lucilia sericata are the first organs to express specific endopeptidase enzymes. These enzymes play a central role in wound healing, and they have potential to be used therapeutically.MethodsRapid amplification of cDNA ends and rapid amplification of genomic ends were used to identify the coding sequence of MMP-1 from L. sericata. Different segments of MMP1 gene, namely the middle part, 3′ end, and 5′ end, were cloned, sequenced, and analyzed using bioinformatics tools to determine the distinct features of MMP-1 protein.ResultsAssembling the different segments revealed that the complete mRNA sequence of MMP-1 is 1932 bp long. CDS is 1212 bp long and is responsible for the production of MMP-1 of 404 amino acid residues with a predicted molecular weight of 45.1 kDa. The middle part, 3′ end, and 5′ end sequences were 933, 503, and 496 bp. In addition, it was revealed that the MMP-1 genomic sequence includes three exons and two introns. Furthermore, the three-dimensional structure of L. sericata MMP-1 protein was evaluated, and its alignment defined that it has high similarity to chain A of human MMP-2 with 100% confidence, 72% coverage, and 38% identity according to the SWISS-MODEL modeling analysis.ConclusionsMMP-1 of L. sericata has a close relationship with its homologs in invertebrates and other insects. The present study significantly contributes to understanding the function, classification, and evolution of the characterized MMP-1 from L. sericata and provides basic required information for the development of an effective medical bioproduct.  相似文献   

9.
BackgroundLysozyme plays a crucial role in innate immunity with its well-recognized bacteriolytic activity. In this study, the influence of expression parameters (inoculation volume, culture volume, growth time, induction temperature and time, initial pH and methanol concentration) on human lysozyme (HLZ) production in recombinant P. pastoris SMD1168 was investigated through Plackett–Burman (PB) design and response surface methodology (RSM).ResultsIt was revealed that induction temperature, induction time and culture volume had significant influence (P < 0.01) on HLZ expression level, which were elected for further optimization with three-dimensional response surface designs for enhanced HLZ production. The highest lysozyme activity reached 3301 U/mL under optimized conditions (at 23.5°C for 90 h with culture volume of 48 mL) in shake flask, which increased 2.2 fold compared with that achieved with the standard protocol (Invitrogen). When high-cell-density fermentation of the recombinant Pichia pastoris was performed in a 15 L fermenter under optimized conditions, the extracellular lysozyme activity reached 47,680 U/mL. SDS-PAGE analysis of the product demonstrated that HLZ was produced as a single major protein with a molecular weight of approximately 14.7 kDa, consistent with its expected size.ConclusionsThe results indicated that the optimized culture conditions using PB design and RSM significantly enhanced the expression level of HLZ, and the Pichia expression system for HLZ production was successful and industrially promising.  相似文献   

10.
BackgroundThe yield of almonds [Prunus dulcis (Mill.) D.A. Webb] could be low due to climatic problems and any factor improving kernel size and weight, such as the use of plant bioregulators (PBRs), should be beneficial.ResultsThree plant bioregulators: 24-epibrassinolide (BL), gibberellic acid (GA3) and kinetin (KN) were applied at three spray concentrations to Non Pareil and Carmel cultivars, at two phenological stages during bloom, in the 2014 and 2015 seasons. The results showed significant differences (P < 0.0001). For total dry weight of Non Pareil, the best treatment was BL (30 mg·L-1), with an average of 1.45 g, while the control was 1.30 g, at pink button during 2015. For Carmel, the best dry weight was 1.23 g, achieved with BL (30 mg·L-1) at fallen petals in both seasons. The average dry weight of the controls varied between 1.13 and 1.18 g. The greatest almond lengths and widths in Non Pareil were 24.98 mm and 15.05 mm, achieved with BL (30 mg·L-1) and KN (50 μL·L-1) treatments, respectively, applied at pink button in 2015. In Carmel, the greatest length and width were 24.38 and 13.44 mm, obtained with BL (30 mg·L-1) applied at the stages of pink button and fallen petals, respectively, in 2015. The control reached lengths between 22.33 and 23.38 mm, and widths between 11.99 and 12.93 mm.ConclusionsThe use of the bioregulators showed significant favorable effects on dry weight, length and width of kernels at harvest, in both cultivars.  相似文献   

11.
BackgroundGABA (γ-aminobutyric acid) is a four-carbon nonprotein amino acid that has hypotensive, diuretic, and tranquilizing properties. Glutamate decarboxylase (GAD) is the key enzyme to generate GABA. A simple and economical method of preparing and immobilizing GAD would be helpful for GABA production. In this study, the GAD from Lactobacillus fermentum YS2 was expressed under the control of a stress-inducible promoter and was purified and immobilized in a fusion form, and its reusability was investigated.ResultsThe fusion protein CBM-GAD was expressed in Escherichia coli DH5α carrying pCROCB-gadB, which contained promoter PrpoS, cbm3 (family 3 carbohydrate-binding module from Clostridium thermocellum) coding sequence, the gadB gene from L. fermentum YS2 coding for GAD, and the T7 terminator. After a one-step purification of CBM-GAD using regenerated amorphous cellulose (RAC) as an adsorbent, SDS-PAGE analysis revealed a clear band of 71 kDa; the specific activity of the purified fusion protein CBM-GAD reached 83.6 ± 0.7 U·mg-1. After adsorption onto RAC, the immobilized GAD with CBM3 tag was repeatedly used for GABA synthesis. The protein-binding capacity of RAC was 174 ± 8 mg·g-1. The immobilized CBM-GAD could repeatedly catalyze GABA synthesis, and 8% of the initial activities was retained after 10 uses. We tested the conversion of monosodium glutamate to GABA by the immobilized enzyme; the yield reached 5.15 g/L and the productivity reached 3.09 g/L·h.ConclusionsRAC could be used as an adsorbent in one-step purification and immobilization of CBM-GAD, and the immobilized enzyme could be repeatedly used to catalyze the conversion of glutamate to GABA.  相似文献   

12.
BackgroundEndoglucanase, one of three type cellulases, can randomly cleave internal β-1,4-linkages in cellulose polymers. Thus, it could be applied in agricultural and industrial processes.ResultsA novel endoglucanase gene (JqCel5A) was cloned from Jonesia quinghaiensis and functionally expressed in Escherichia coli Rosetta (DE3). It contained 1722 bp and encoded a 573-residue polypeptide consisting of a catalytic domain of glycoside hydrolase family 5 (GH5) and a type 2 carbohydrate-binding module (CBM2), together with a predicted molecular mass of 61.79 kD. The purified JqCel5A displayed maximum activity at 55°C and pH 7.0, with 21.7 U/mg, 26.19 U/mg and 4.81 U/mg towards the substrate carboxymethyl cellulose, barley glucan and filter paper, respectively. Interestingly, JqCel5A exhibited high pH stability over a broad pH range of pH (3–11), and had good tolerance to a wide variety of deleterious chemicals including heavy metals and detergent. The catalytic mechanism of JqCel5A was also investigated by site mutagenesis and homology-modeling in this study.ConclusionsIt was believed that these properties might make JqCel5A to be potentially used in the suitable industrial catalytic condition, which has a broad pH fluctuation and/or chemical disturbance.  相似文献   

13.
BackgroundCatalase (CAT) is an important enzyme that degrades H2O2 into H2O and O2. To obtain an efficient catalase, in this study, a new strain of high catalase-producing Serratia marcescens, named FZSF01, was screened and its catalase was purified and characterized.ResultsAfter optimization of fermentation conditions, the yield of catalase produced by this strain was as high as 51,468 U/ml. This catalase was further purified using two steps: DEAE-fast flow and Sephedex-G150. The purified catalase showed a specific activity of 197,575 U/mg with a molecular mass of 58 kDa. This catalase exhibited high activity at 20–70°C and pH 5.0–11.0. Km of the catalase was approximately 68 mM, and Vmax was 1886.8 mol/min mg. This catalase was further identified by LC–MS/MS, and the encoding gene was cloned and expressed in Escherichia coli BL21 (DE3) with a production of 17,267 ± 2037 U/ml.ConclusionsTo our knowledge, these results represent one of the highest fermentation levels reported among current catalase-producing strains. This FZSF01 catalase may be suitable for several industrial applications that comprise exposure to alkaline conditions and under a wide range of temperatures.  相似文献   

14.
BackgroundEndophytic bacteria are ubiquitous in all plant species contributing in host plant's nutrient uptake and helping the host to improve its growth. Moringa peregrina which is a medicinal plant, growing in arid region of Arabia, was assessed for the presence of endophytic bacterial strains.ResultsPCR amplification and sequencing of 16S rRNA of bacterial endophytes revealed the 5 endophytic bacteria, in which 2 strains were from Sphingomonas sp.; 2 strains from Bacillus sp. and 1 from Methylobacterium genus. Among the endophytic bacterial strains, a strain of Bacillus subtilis LK14 has shown significant prospects in phosphate solubilization (clearing zone of 56.71 mm after 5 d), ACC deaminase (448.3 ± 2.91 nM α-ketobutyrate mg- 1 h- 1) and acid phosphatase activity (8.4 ± 1.2 nM mg- 1 min- 1). The endophytic bacteria were also assessed for their potential to produce indole-3-acetic acid (IAA). Among isolated strains, the initial spectrophotometry analysis showed significantly higher IAA production by Bacillus subtilis LK14. The diurnal production of IAA was quantified using multiple reactions monitoring method in UPLC/MS–MS. The analysis showed that LK14 produced the highest (8.7 μM) IAA on 14th d of growth. Looking at LK14 potentials, it was applied to Solanum lycopersicum, where it significantly increased the shoot and root biomass and chlorophyll (a and b) contents as compared to control plants.ConclusionThe study concludes that using endophytic bacterial strains can be bio-prospective for plant growth promotion, which might be an ideal strategy for improving growth of crops in marginal lands.  相似文献   

15.
BackgroundHong Qu glutinous rice wine (HQGRW) is brewed under non-aseptic fermentation conditions, so it usually has a relatively high total acid content. The aim of this study was to investigate the dynamics of the bacterial communities and total acid during the fermentation of HQGRW and elucidate the correlation between total acid and bacterial communities.ResultsThe results showed that the period of rapid acid increase during fermentation occurred at the early stage of fermentation. There was a negative response between total acid increase and the rate of increase in alcohol during the early fermentation stage. Bacterial community analysis using high-throughput sequencing technology was found that the dominant bacterial communities changed during the traditional fermentation of HQGRW. Both principal component analysis (PCA) and hierarchical clustering analysis revealed that there was a great difference between the bacterial communities of Hong Qu starter and those identified during the fermentation process. Furthermore, the key bacteria likely to be associated with total acid were identified by Spearman's correlation analysis. Lactobacillus, unclassified Lactobacillaceae, and Pediococcus were found, which can make significant contributions to the total acid development (| r | > 0.6 with FDR adjusted P < 0.05), establishing that these bacteria can associate closely with the total acid of rice wine.ConclusionsThis was the first study to investigate the correlation between bacterial communities and total acid during the fermentation of HQGRW. These findings may be helpful in the development of a set of fermentation techniques for controlling total acid.How to cite: Liang Z, Lin X, He Z, et al. Dynamic changes of total acid and bacterial communities during the traditional fermentation of Hong Qu glutinous rice wine. Electron J Biotechnol 2020;43. https://doi.org/10.1016/j.ejbt.2019.12.002  相似文献   

16.
BackgroundSulphur-oxidizing microorganisms are widely used in the biofiltration of total reduced sulphur compounds (odorous and neurotoxic) produced by industries such as the cellulose and petrochemical industries, which include high-temperature process steps. Some hyperthermophilic microorganisms have the capability to oxidize these compounds at high temperatures (> 60°C), and archaea of this group, for example, Sulfolobus metallicus, are commonly used in biofiltration technology.ResultsIn this study, a hyperthermophilic sulphur-oxidizing strain of archaea was isolated from a hot spring (Chillán, Chile) and designated as M1. It was identified as archaea of the genus Sulfolobus (99% homology with S. solfataricus 16S rDNA). Biofilms of this culture grown on polyethylene rings showed an elemental sulphur oxidation rate of 95.15 ± 15.39 mg S l-1 d-1, higher than the rate exhibited by the biofilm of the sulphur-oxidizing archaea S. metallicus (56.8 ± 10.91 mg l-1 d-1).ConclusionsThe results suggest that the culture M1 is useful for the biofiltration of total reduced sulphur gases at high temperatures and for other biotechnological applications.  相似文献   

17.
BackgroundHydatid disease is a serious parasitic disease threatening public health. Because of its rarity in non-endemic coastal areas, determining the nature and origin of a chronic, enlarged liver cystic mass is challenging in these regions. Under these circumstances, physicians need a confirmatory diagnostic tool beyond immunological and radiological examinations. This study investigated a novel human single-chain fragment variable (scFv) antibody for the confirmative diagnosis of 18 atypical hydatid disease cases in non-endemic coastal areas.ResultsA scFv antibody against cystic echinococcosis was produced by genetic engineering and then applied to the immunohistochemical diagnosis of 18 cases of cystic echinococcosis presented in non-endemic coastal areas. The diagnosis of these cases by ultrasound and serum-based examinations was inconclusive. The 750 bp scFv antibody gene was expressed in COS-7 cells, and the antibody localized in the cytoplasm. The scFv antibody can detect the germinal layer and protoscolices of actively growing cysts but not of the degenerating protoscolices and has a diagnostic efficiency higher than that of single serum or ultrasound testing (P < 0.05). The combined use of scFv antibodies with serology and ultrasound diagnostics results in a diagnostic efficiency comparable to that of surgery. The scFv antibody can be used as a confirmatory test for the diagnosis of hydatid disease in non-endemic areas, providing a beneficial supplementary diagnostic method that complements traditional immune testing and ultrasonic radiology and thus helping physicians to effectively differentiate hydatid disease.  相似文献   

18.
BackgroundRhodotorula glutinis is capable of synthesizing numerous valuable metabolites with extensive potential industrial usage. This paper reports the effect of initial culture medium pH on growth and protein, lipid, and carotenoid biosynthesis by R. glutinis.ResultsThe highest biomass yield was obtained in media with pH 4.0–7.0, and the value after 72 h was 17.2–19.4 gd.w./L. An initial pH of the medium in the range of 4.0–7.0 has no significant effect on the protein (38.5–41.3 g/100 gd.w.), lipid (10.2–12.7 g/100 gd.w.), or carotenoid (191.7–202.9 μg/gd.w.) content in the biomass or on the profile of synthesized fatty acids and carotenoids. The whole pool of fatty acids was dominated by oleic (48.1–53.4%), linoleic (21.4–25.1%), and palmitic acids (13.0–15.8%). In these conditions, the yeast mainly synthesized torulene (43.5–47.7%) and β-carotene (34.7–38.6%), whereas the contribution of torularhodin was only 12.1–16.8%. Cultivation in medium with initial pH 3.0 resulted in a reduction in growth (13.0 gd.w./L) and total carotenoid (115.8 μg/gd.w.), linoleic acid (11.5%), and torularhodin (4.5%) biosynthesis.ConclusionThe different values of initial pH of the culture medium with glycerol and deproteinized potato wastewater had a significant effect on the growth and protein, lipid, and carotenoid biosynthesis by R. glutinis.  相似文献   

19.
20.
BackgroundA protocol for the micropropagation of the grape (Vitis vinifera L.) cultivar ‘Monastrell’ was developed. Initial plant material was obtained from the sanitary selection of grapevine plants performed by real-time RT-PCR to confirm the absence of Grapevine fanleaf virus, Arabis mosaic virus, Grapevine leafroll-associated virus 1, Grapevine leafroll-associated virus 3, and Grapevine fleck virus.ResultsThe effects of the salt composition (comparing Lloyd and McCown woody plant medium and Murashige and Skoog medium 1/2 macronutrients) and the growth regulator benzylaminopurine (BAP), at 0 and 8.9 μM, on plant propagation were evaluated using nodes as explants. The most efficient procedure consisted of bud induction in the medium with Lloyd and McCown woody plant salts and 8.9 μM BAP for 30 d along with elongation in cytokinin-free medium for 60 d, which gave 22 nodes/explant (174 plants/initial plant). A second cycle of propagation in a medium without BAP for another 60 d could give approximately 10,000 nodes, which can be obtained after an additional 2 months of culture. All plants acclimatized after the second cycle of multiplication were successfully transferred to soil.ConclusionWe developed an optimal protocol for V. vinifera cv. ‘Monastrell’ micropropagation, the first described for this cultivar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号