首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
文[2]对文[1]中的定理推广为:若方程x f(x)=m和x f~(-1)(x)=m分别有唯一根a,b.则a b=m.文[3]又对文[2]进行了再推广,得到了结论:若方程x·f(x)=m和x·f~(-1)(x)=m分别有唯一根a,b.则a·b=m.笔者对[2]、文[3]的两个结论进行再探究.  相似文献   

2.
微积分基本定理通常叙述为: 若f(x)在[a,b]上连续,则 〈1〉Φ(x)=integral from n=a to x(f(x)dx)是f(x)在[a,b]上的一个原函数,即Φ’(x)=f(x)x∈[a,b]; 〈2〉若F(x)是f(x)在[a,b]上的任一原函数,则 integral from n=a to b(f(x)dx=F(b)-F(a)) (称为牛顿—菜布尼兹公式) 此定理就其对微积分的重要性来讲,称之为基本  相似文献   

3.
文[1]给出了求函数f(x)=√ax √b d-cx的值域的定理. 定理设f1(x)=ax b,f2(x)=d-cx(a、c>0,(d/c)>-(b/a)),则函数f(x)=√ax b √d-cx的值域是[√[f1(x) f2(x)]min, √f1((d/c)) f2(-(b/a))].  相似文献   

4.
结论函数f(x)=daxc b(不妨设a>0),若b2=amd2(m∈R),则f(x) f(m-x)=bc.(※)证明f(x) f(m-x)=cdax b dam-cx b=(d2[adm( a bm-2)x badx)(a x2 b]acm-x)=d(am-x ax 2db)cbd(ax am-x d2abmd b2)因为b2=amd2,所以d2abmd b2=2db,所以f(x) f(m-x)=bc.特例(1)若d=1,则上面的结论(※)可叙述为:函数f(x)=ax c b(a>0),若b2=am,则f(x) f(m-x)=bc.(2)若m=0,b2=1,则上面的结论(※)可叙述为:函数f(x)=axc b(a>0),若b2=1,则f(x) f(-x)=bc.(3)若c=1,d=1时,则上面的结论(※)可叙述为:函数f(x)=ax1 b(a>0),若b2=am,则f(x) f(m-x)=1b.应用(函数的以上性质可应…  相似文献   

5.
在古典数学分析中,Cauchy中值定理是:若函数f(x)与(?)(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且对任意x∈(a,b)(?)′(x)≠0,则在(a/b)内存在一点C,使得f(b)-f(a)/(?)(b)-(?)(a)=f′(c)/(?)′(c)如果令(?)(x)=x,得  相似文献   

6.
一般数学分析课本上对定积分的第一中值定理是这样叙述的:定理1 若函数f(x)在[a,b]上连续,g(x)在[a,b]上可积且不变号,则在[a,b]上存在一点ξ使得而这个定理在(1)中却是这样叙述的:定理2 若函数f(x)在[a,b]上连续,g(x)在[a,b]上可积且不变号,则在开区间(a,b)内存在一点ξ,使  相似文献   

7.
2004年高考数学试题(广东卷)第21题第(2)问中给出了一个新定理(介值定理),要求学生透彻地理解新定理,准确地把握新定理,灵活地运用新定理,进而解决所给出的新问题.解决这类问题的关键就是创设新定理所需要满足的条件,然后运用新定理的结论来解决问题.这类问题极富思考性和挑战性,值得认真研讨,下面采撷几例,供参考.1阅读领悟函数中的新定理例1设函数f(x)=x-ln(x+m),其中常数m为整数.(1)当m为何值时,f(x)≥0;(2)定理:若函数g(x)在[a,b]上连续,且g(a)与g(b)异号,则至少存在一点x0∈(a,b),使g(x0)=0.试用上述定理证明:当整数m>1时,方程f(x)=0在…  相似文献   

8.
本文证明当α≠1时,sinx~α,cosx~α,tgx~α,ctgx~α均非周期函数. [定理1]若f(x)≠a且lim f(x)=a,则f(x)不是周期函数.(见文[1]) [定理2]设f(x)在任一有限区间上都是有界的,且存在一点列{x_α},使limf(x)=∞,则f(x)  相似文献   

9.
<正>定积分的单调性是定积分的重要性质,文[1]对定积分的单调性[1]中称为积分不等式定理)作了一些补充和说明,这对初学数学分析的学生有一定的指导作用,但笔者认为文[1]的某些说法欠妥,本文对[1]的一些问题提出不同的看法,并给出了定积分单调性定理的一般形式.为叙述方便起见,把定积分的单调性定理叙述如下:定理A([2],275页)设f(x)与g(x)在[a,b]可积,若f(x)≥g(x),则integral from a to b f(x)dx≥integral from a to b g(x)dx.运用定理A,教材[2]以例题的形式证明了如下结论  相似文献   

10.
1导函数f′(x)在x=x0处的极限与函数y=f(x)在x=x0处的可导性定理1若函数f(x)在(a,b)内连续,在(a,b)中除点x0外处处可导,且li mx→x0f′(x)存在,那么函数y=f(x)在x=x0处可导,且f′(x0)=lxi→mx0f′(x).证明:任取异于x0的x∈(a,b),在[x0,x]或[x,x0]上应用lagrange中值定理,有f(xx  相似文献   

11.
在定积分中,有这样一条性质 定理 若函数f(x)在区间[a,b]上可积,且任取x∈[a,b],有f(x)≥0,则 integral from n=a to bf(x)dx≥0 它称为定积分的单调性。 该性质的条件中f(x)≥0可能有以下情况发生1°x∈[a,b],f(x)=0;2°Ex∈[a,b]使f(x)=0,同时Ex∈[a,b]使f(x)>0;3°x∈[a,b],f(x)>0。  相似文献   

12.
2004西部数学奥林匹克试题第三题为:求所有的实数k,使得不等式a2+b2+c2+d2+1≥k(a+b+c+d)对任意a,b,c,d∈[-1,+∞)都成立。文[1]给出它的解为k=34,从而上题可改叙如下:定理1对于任意a,b,c,d∈[-1,+∞),有a3+b3+c3+d3+1≥34(a+b+c+d)。证明见文[1]。进一步研究,又可得到如下的几个定理:定理2设k为大于1的偶数,则当n≥(k-1)k-1时,对坌xi∈R(i=1,2…,n),有:ni=1移xik+1≥nk xi。证明考察函数f(x)=nxk+1-kx,则f'(x)=k(nxk-1-1),令f’(x)=0,由k为大于1的偶数,得x=1k-1姨n,即当xk-1姨1n时f(x)单调增,即fmin(x)=f(1k-1姨…  相似文献   

13.
文阐述了周期函数的两个定理及其应用,读后很有启发,但就该文讨论的函数结构关系式来说却不够全面、深刻.本文根据文[1]的思考方法,从直线、点、直线与点三个方面对周期函数的性质进行了探讨,得出以下三个定理,作为文[1]的补充说明. 对于函数y=f(x),x∈R,有定理一如果函数f(x)的图象关于直线x=2/1(m+n)和x=1/2(a+b)(m+n相似文献   

14.
近年来,经常出现函数的周期性与函数其它性质相关的题目。那么函数的周期性与函数的其它性质有无本质的内在的关系呢?现讨论如下: 一、几个定理 定理1:设函数y=f(x)定义在R上,其图象关于x=a,x=b(a≠b)对称,则f(x)是以2|b-a|为周期的周期函数。 证明:不妨设a相似文献   

15.
错在哪儿     
<正>题目若函数f(x)=(1/2)(x-1)+m在区间[a,b]上的值域为[a/2,b/2](b>a≥1),则实数m的取值范围为.此题是我市高三期中模拟试卷上的一道试题.我和同桌分别用了两种不同的解法,但最后结果不一致,到底谁是谁非呢?解法1(我的解法)由于f(x)=(1/2)(x-1)+m在[a,b]上是单调增函数,故f(a)=a/2,f(b)=b/2,即  相似文献   

16.
<正>一、函数的对称性定理1:若函数y=f(x)定义域为R,且满足条件:f(a+x)=f(b-x),则函数y=f(x)的图像关于直线x=(a+b)/2对称。定理2:若函数y=f(x)定义域为R,且满足条件:f(a+x)+f(b-x)=c(a,b,c为常数),则函数y=f(x)的图像关于点  相似文献   

17.
本文考虑了微分中值定理及积分中值定理的反问题,证明了下述结果:定理1 设函数f(x)及g(x)在闭区间[a,b]上连续,在开区间(a,b)上可导.且对任意ξ∈(a,b).g′(ξ)>0,F(x)=F(x)-F(ξ)/g(x)-g(ξ)为x的严格增函数(除ξ点外)。那么存在x_1,x_2∈(a,b),x_1<ξ相似文献   

18.
文[1]给出了柯西中值定理的一个新证法。该证法一反常规,不是利用罗尔定理进行证明,而是以文献[2]给出的: (1°)予备定理 设函数f(x)在点x_o处有有穷导数。若这导数f′(x_o)>0f′(x_o)<0),则当x取右方充分接近于x_o的数值时就有f(x)>f(x_o)(f(x)f(x_o))。 (2°)达布定理 若函数f(x)在区间[a,b]上有有穷导数,则函数f′(x)必至少有一次取得介于f′(a)及f′(b)  相似文献   

19.
导数的应用非常广泛,导数与函数的单调性的综合运用问题是高考命题的热点。有些貌似与导数无关的问题,若巧用导数去解决,常有"山重水复疑无路,柳暗花明又一村"的效果。下面举例说明。一、判断方程的根的个数由函数的图像性质特征可知,若f(x)在区间[a,b]上单调,且f(a)f(b)<0,则f(x)=0在[a,b]上有唯一的实根,若f(a)f(b)与零的大小无法确定,则f(x)=0在区间[a,b]上至多有一个实根。例1若-1相似文献   

20.
零点存在性定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点.即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.传统的函数零点存在性定理的考查,如:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号