首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Black males, as one non-dominant population, remain underrepresented and less successful in science, technology, engineering, and mathematics (STEM). Researchers focused on non-dominant populations are advised against generalizations and to examine cultural intersections (i.e. race, ethnicity, gender, and more) and also to explore cases of success, in addition to cases of under-achievement and underrepresentation. This study has focused on one African American male, Randy, who expressed high-achieving STEM career goals in computer science and engineering. Furthermore, recognizing that culture and identity development underlie STEM engagement and persistence, this long-term case study focused on how Randy developed a STEM identity during the course of the study and the implications of that process for his STEM career exploration. Étienne Wenger’s (1999) communities-of-practice (CoP) was employed as a theoretical framework and, in doing so, (1) the informal STEM program in which Randy participated was characterized as a STEM-for-social-justice CoP and (2) Randy participated in ways that consistently utilized an “economics” lens from beyond the boundaries of the CoP. In doing so, Randy functioned as a broker within the CoP and developed a non-traditional STEM identity-in-practice which integrated STEM, “economics”, and community engagement. Randy’s STEM identity-in-practice is discussed in terms of the contextual factors that support scientific identity development (Hazari et al. in J Res Sci Teach 47:978–1003, 2010), the importance of recognizing and supporting the development of holistic and non-traditional STEM identities, especially for diverse populations in STEM, and the implications of this new understanding of Randy’s STEM identity for his long-term STEM career exploration.  相似文献   

3.
This project developed and studied The Source, an alternate reality game (ARG) designed to foster interest and knowledge related to science, technology, engineering, and math (STEM) among youth from populations underrepresented in STEM fields. ARGs are multiplayer games that engage participants across several media such as shared websites, social media, personal communications, and real-world settings to complete activities and collaborate with team members. The Source was a five-week summer program with 144 participants from Chicago aged 13 to 18 years. The Source incorporated six socio-contextual factors derived from three frameworks: Chang’s (ERIC Digest, 2002) recommendations for engaging underrepresented populations in STEM careers, Lave and Wenger’s (Cambridge University Press, 1991) situated learning model, and Barron’s (Human Development, 49(4); 193-224, 2006) learning ecology perspective. These factors aligned with the program’s aims of promoting (1) social community and peer support, (2) collaboration and teamwork, (3) real-world relevance and investigative learning, (4) mentoring and exposure to STEM professionals, (5) hands-on activities to foster transferable skill building, and (6) interface with technology. This paper presents results from 10 focus groups and 10 individual interviews conducted with a subset of the 144 youth participants who completed the game. It describes how these six factors were realized through The Source and uses them as a lens for considering how The Source functioned pedagogically. Qualitative findings describe youth’s perception of The Source’s potential influence on STEM interest, engagement, and identity formation. Despite limitations, study results indicate that underrepresented youth can engage in an immersive, narrative, and game-based experience as a potential mechanism for piquing and developing STEM interest and skills, particularly among underrepresented youth.  相似文献   

4.
Graduate teaching assistants (GTAs) in science, technology, engineering, and mathematics (STEM) have a large impact on undergraduate instruction but are often poorly prepared to teach. Teaching self-efficacy, an instructor’s belief in his or her ability to teach specific student populations a specific subject, is an important predictor of teaching skill and student achievement. A model of sources of teaching self-efficacy is developed from the GTA literature. This model indicates that teaching experience, departmental teaching climate (including peer and supervisor relationships), and GTA professional development (PD) can act as sources of teaching self-efficacy. The model is pilot tested with 128 GTAs from nine different STEM departments at a midsized research university. Structural equation modeling reveals that K–12 teaching experience, hours and perceived quality of GTA PD, and perception of the departmental facilitating environment are significant factors that explain 32% of the variance in the teaching self-efficacy of STEM GTAs. This model highlights the important contributions of the departmental environment and GTA PD in the development of teaching self-efficacy for STEM GTAs.Science, technology, engineering, and mathematics (STEM) graduate teaching assistants (GTAs) play a significant role in the learning environment of undergraduate students. They are heavily involved in the instruction of undergraduate students at master’s- and doctoral-granting universities (Nyquist et al., 1991 ; Johnson and McCarthy, 2000 ; Sundberg et al., 2005 ; Gardner and Jones, 2011 ). GTAs are commonly in charge of laboratory or recitation sections, in which they often have more contact and interaction with the students than the professor who is teaching the course (Abraham et al., 1997 ; Sundberg et al., 2005 ; Prieto and Scheel, 2008 ; Gardner and Jones, 2011 ).Despite the heavy reliance on GTAs for instruction and the large potential for them to influence student learning, there is evidence that many GTAs are completely unprepared or at best poorly prepared for their role as instructors (Abraham et al., 1997 ; Rushin et al., 1997 ; Shannon et al., 1998 ; Golde and Dore, 2001 ; Fagen and Wells, 2004 ; Luft et al., 2004 ; Sundberg et al., 2005 ; Prieto and Scheel, 2008 ). For example, in molecular biology, 71% of doctoral students are GTAs, but only 30% have had an opportunity to take a GTA professional development (PD) course that lasted at least one semester (Golde and Dore, 2001 ). GTAs often teach in a primarily directive manner and have intuitive notions about student learning, motivation, and abilities (Luft et al., 2004 ). For those who experience PD, university-wide PD is often too general (e.g., covering university policies and procedures, resources for students), and departmental PD does not address GTAs’ specific teaching needs; instead departmental PD repeats the university PD (Jones, 1993 ; Golde and Dore, 2001 ; Luft et al., 2004 ). Nor do graduate experiences prepare GTAs to become faculty and teach lecture courses (Golde and Dore, 2001 ).While there is ample evidence that many GTAs are poorly prepared, as well as studies of effective GTA PD programs (biology examples include Schussler et al., 2008 ; Miller et al., 2014 ; Wyse et al., 2014 ), the preparation of a graduate student as an instructor does not occur in a vacuum. GTAs are also integral members of their departments and are interacting with faculty and other GTAs in many different ways, including around teaching (Bomotti, 1994 ; Notarianni-Girard, 1999 ; Belnap, 2005 ; Calkins and Kelly, 2005 ). It is important to build good working relationships among the GTAs and between the GTAs and their supervisors (Gardner and Jones, 2011 ). However, there are few studies that examine the development of GTAs as integral members of their departments and determine how departmental teaching climate, GTA PD, and prior teaching experiences can impact GTAs.To guide our understanding of the development of GTAs as instructors, a theoretical framework is important. Social cognitive theory is a well-developed theoretical framework for describing behavior and can be applied specifically to teaching (Bandura, 1977 , 1986 , 1997 , 2001 ). A key concept in social cognitive theory is self-efficacy, which is a person’s belief in his or her ability to perform a specific task in a specific context (Bandura, 1997 ). High self-efficacy correlates with strong performance in a task such teaching (Bandura, 1997 ; Tschannen-Moran and Hoy, 2007 ). Teaching self-efficacy focuses on teachers’ perceptions of their ability to “organize and execute courses of action required to successfully accomplish a specific teaching task in a particular context” (Tschannen-Moran et al., 1998 , p. 233). High teaching self-efficacy has been shown to predict a variety of types of student achievement among K–12 teachers (Ashton and Webb, 1986 ; Anderson et al., 1988 ; Ross, 1992 ; Dellinger et al., 2008 ; Klassen et al., 2011 ). In GTAs, teaching self-efficacy has been shown to be related to persistence in academia (Elkins, 2005 ) and student achievement in mathematics (Johnson, 1998 ). High teaching self-efficacy is evidenced by classroom behaviors such as efficient classroom management, organization and planning, and enthusiasm (Guskey, 1984 ; Allinder, 1994 ; Dellinger et al., 2008 ). Instructors with high teaching self-efficacy work continually with students to help them in learning the material (Gibson and Dembo, 1984 ). These instructors are also willing to try a variety of teaching methods to improve their teaching (Stein and Wang, 1988 ; Allinder, 1994 ). Instructors with high teaching self-efficacy perform better as teachers, are persistent in difficult teaching tasks, and can positively affect their student’s achievement.These behaviors of successful instructors, which can contribute to student success, are important to foster in STEM GTAs. Understanding of what influences the development of teaching self-efficacy in STEM GTAs can be used to improve their teaching self-efficacy and ultimately their teaching. Therefore, it is important to understand what impacts teaching self-efficacy in STEM GTAs. Current research into factors that influence GTA teaching self-efficacy are generally limited to one or two factors in a study (Heppner, 1994 ; Prieto and Altmaier, 1994 ; Prieto and Meyers, 1999 ; Prieto et al., 2007 ; Liaw, 2004 ; Meyers et al., 2007 ). Studying these factors in isolation does not allow us to understand how they work together to influence GTA teaching self-efficacy. Additionally, most studies of GTA teaching self-efficacy are not conducted with STEM GTAs. STEM instructors teach in a different environment and with different responsibilities than instructors in the social sciences and liberal arts (Lindbloom-Ylanne et al., 2006 ). These differences could impact the development of teaching self-efficacy of STEM GTAs compared with social science and liberal arts GTAs. To further our understanding of the development of STEM GTA teaching self-efficacy, this paper aims to 1) describe a model of factors that could influence GTA teaching self-efficacy, and 2) pilot test the model using structural equation modeling (SEM) on data gathered from STEM GTAs. The model is developed from social cognitive theory and GTA teaching literature, with support from the K–12 teaching self-efficacy literature. This study is an essential first step in improving our understanding of the important factors impacting STEM GTA teaching self-efficacy, which can then be used to inform and support the preparation of effective STEM GTAs.  相似文献   

5.
Despite an increased focus on science, technology, engineering, and mathematics (STEM) in U.S. schools, today’s students often struggle to maintain adequate performance in these fields compared with students in other countries (Cheek in Thinking constructively about science, technology, and society education. State University of New York, Albany, 1992; Enyedy and Goldberg 2004; Mandinach and Lewis 2006). In addition, despite considerable pressure to promote the placement of students into STEM career fields, U.S. placement is relatively low (Sadler et al. in Sci Educ 96(3):411–427, 2012; Subotnik et al. in Identifying and developing talent in science, technology, engineering, and mathematics (STEM): an agenda for research, policy and practice. International handbook, part XII, pp 1313–1326, 2009). One explanation for the decline of STEM career placement in the U.S. rests with low student affect concerning STEM concepts and related content, especially in terms of self-efficacy. Researchers define self-efficacy as the internal belief that a student can succeed in learning, and that understanding student success lies in students’ externalized actions or behaviors (Bandura in Psychol Rev 84(2):191–215, 1977). Evidence suggests that high self-efficacy in STEM can result in student selection of STEM in later educational endeavors, culminating in STEM career selection (Zeldin et al. in J Res Sci Teach 45(9):1036–1058, 2007). However, other factors such as proficiency play a role as well. The lack of appropriate measures of self-efficacy can greatly affect STEM career selection due to inadequate targeting of this affective trait and loss of opportunity for early intervention by educators. Lack of early intervention decreases selection of STEM courses and careers (Valla and Williams in J Women Minor Sci Eng 18(1), 2012; Lent et al. in J Couns Psychol 38(4), 1991). Therefore, this study developed a short-form measure of self-efficacy to help identify students in need of intervention.  相似文献   

6.
Although education experts are increasingly advocating the incorporation of integrated Science, Technology, Engineering, and Mathematics (STEM) curriculum units to address limitations in much current STEM teaching and learning, a review of the literature reveals that more often than not such curriculum units are not mediating the construction of in-depth STEM knowledge. In this paper, we conjecture that the challenge of generating integrated STEM curriculum units that overcome this limitation and facilitate in-depth learning of and about STEM can be met by the use of three types of big ideas: within-discipline big ideas that have application in other STEM disciplines, cross-discipline big ideas, and encompassing big ideas. We provide a six-component framework (together with an example of the framework in action) that can be used to scaffold pre- and in-service teachers’ development of integrated STEM curriculum units based around these types of big ideas. The paper concludes by discussing possible directions for future research and development in this field.  相似文献   

7.
Despite calls for greater agreement in defining the Scholarship of Teaching and Learning (SoTL), terms that resemble SoTL are proliferating. An NSF-sponsored center for teaching and learning coined its own term, teaching-as-research (TAR), believing it would resonate better with research-active scientists, engineers, and mathematicians. To understand whether this was a wise strategy, we interviewed 43 participants from courses that sought to explain and demonstrate TAR. Our study found that participants defined TAR with varying complexity and that disciplinary concepts generally provided “conceptual handles” for making sense of TAR. However, tailoring a term to particular disciplines entails several challenging tradeoffs.
Mark R. ConnollyEmail:

Mark Connolly   is a Researcher who studies STEM education reform efforts, postsecondary teaching, graduate education, and practitioner theorizing Jana Bouwma-Gearhart   is an Assistant Researcher whose interests include STEM K-16 educators’ teaching professional development and science learning through inquiry Matthew Clifford   is an Associate Researcher who studies the practice of instructional leadership and change in the sciences, with particular attention to the potentialities of secondary and post-secondary faculty collaboration and curriculum design.  相似文献   

8.
Despite decades of efforts to increase the participation of women and people from underrepresented minority groups (URM) in science and math majors and careers, and despite the increasing diversification of the US population as a whole (Planty et al in National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education, Washington, DC, 2008), participation in STEM majors and STEM careers (including STEM teaching) remains stubbornly male and white (Landivar in American Community Survey Reports, ACS-24, U.S. Census Bureau, Washington, DC, 2013; National Science Foundation and National Center for Science and Engineering Statistics in Special Report NSF 15-311, Arlington, VA, 2015). This paper describes a project with two central goals: (1) to provide opportunities for URM high school students to engage in authentic science and math inquiry with the support of skilled college undergraduate mentors in the hope that these experiences will encourage these high school students to choose and persist in pursuing careers in STEM fields and, even if they do not choose those careers, to feel confident making complex, science or math-based decisions in their everyday lives and (2) to help the mentors (young people, mostly STEM majors) see teaching as a vital, intellectually challenging career that can provide them the opportunity to work for social justice in their communities. While it is unlikely that any one experience will help young people overcome the long odds that face them as they consider either path, our analysis suggests that projects of this kind can make a meaningful contribution to the effort.  相似文献   

9.
Elementary teachers often hold inaccurate beliefs about the Nature of Science (NoS) and have negative attitudes toward science and mathematics. Using a pre-post design, the current study examined beliefs about the NoS, attitudes toward science and mathematics, and beliefs about the teaching of mathematics and science in a large sample study (N = 343) of pre-service teachers receiving a curriculum-wide intervention to improve these factors in comparison with Science, Technology, Engineering, and Mathematics (STEM) and non-STEM majors in other physics courses (N = 6697) who did not receive the intervention, over a 10-year period. Pre-service teachers evidenced initially more negative attitudes about mathematics and science than STEM majors and slightly more positive attitudes than non-STEM majors. Their attitudes toward mathematics and science and beliefs about the NoS were more similar to non-STEM than STEM majors. Pre-service teachers initially evidenced more positive beliefs about the teaching of mathematics and science, and their beliefs even increased slightly over the course of the semester, while these beliefs in other groups remained the same. Beliefs about the NoS and the teaching of mathematics and science were significantly negatively correlated for STEM and non-STEM majors, but were not significantly correlated for pre-service teachers. Beliefs about the NoS and attitudes toward mathematics and science were significantly positively correlated for both pre-service teachers and STEM students pursing the most mathematically demanding STEM majors. Attitudes toward science and mathematics were significantly positively correlated with accurate beliefs about the teaching of mathematics and science for all student groups.  相似文献   

10.
STEM, or the integration of science, technology, engineering and mathematics, has rapidly become a dominant discourse in political, economic and educational spheres. In the U.S., the STEM movement has been boosted by global economic-based competition and associated fears, in terms of STEM graduates, when compared with other nations. However, many critiques question the nature and goals of this competition, as well as, the possibilities to improve STEM talents through the current dominant conceptualizations and practices of STEM education. In addition, the apparent lack of significant and coherent embracement of (and sometimes silence about) socioscientific and socio-political issues and perspectives renders STEM education incapable of preparing learners for active citizenships. Building on these critiques, I argue that these problems are possible consequences of STEM as a construct of power. My arguments are based on Lyotard’s conceptions of knowledge in postmodern society (as reported in The postmodern condition: A report on knowledge, University Press, Manchester, 1984), which I use to analyze some aspects of the STEM educational movement. Throughout the paper, I explore the construction of STEM education within competitive frames that place prime value on high performativity. There seem to be two characteristics of current STEM education that support performativity; these are an increased focus on technological and engineering designs, and a tendency for interdisciplinary education. At the same time, the eagerness for performativity and competition seems to drag STEM education into selectiveness, thereby jeopardizing its possible benefits. Recommendations are also discussed.  相似文献   

11.
This forum paper dialogues with Sheron Mark’s A bit of both science and economics: a non-traditional STEM identity narrative. In her paper, she discusses the development of a Science, Technology, Engineering, and Mathematics (STEM) identity by a young African American male during an informal STEM for Social Justice Program. Here, the discussion focuses on Black masculinities, identity formation, and the role of science educators in making STEM fields a welcoming place for young Black men. Drawing from Mark’s data and discussion, this paper is a dialogue between science identity possibilities in the United States and in Brazil when we look at the intersections of race, gender, and socioeconomic status. Using the shared colonial past of both countries a connection is established to address race relations within science education. The main argument in this paper is that racism can no longer be denied and dismissed by the science education community worldwide and that intersectional approaches are needed to face this issue.  相似文献   

12.
ABSTRACT

The aim of this study was to develop a scale to measure students’ STEM continuing motivation (CM). In accordance with the conceptualisation of CM by Maehr (1976. Continuing motivation: An analysis of a seldom considered educational outcome. Review of Educational Research, 46(3), 443–462. doi:10.3102/00346543046003443), we define STEM CM as students’ tendencies to actively engage in STEM-related activities. The STEM Continuing Motivation Scale was developed from a literature review and student cognitive interviews, and was validated on a sample of 465 Chinese 7th and 8th graders. The results demonstrated that the developed scale had high reliability (Cronbach’s α?=?0.91) and good validity. Analysis of variance (ANOVA) showed that boys had significantly higher STEM CM than girls and there were significant differences in engineering CM among students from different schools. The implications of the findings of this study are also discussed.  相似文献   

13.
A major debate is currently underway in the USA about whether there is, in fact, a science, technology, engineering and mathematics (STEM) workforce shortage in the country or not. This is the subject of the Bayer Facts of Science Education XVI: US STEM Workforce Shortage—Myth or Reality? Fortune 1000 Talent Recruiters on the Debate. An ongoing public opinion research project commissioned by Bayer Corporation, the Bayer Facts surveys examine US STEM education, diversity and workforce issues. The 16th in the series, the newest survey asks talent recruiters at some of the country’s largest employers—those included in the Fortune 1000—to weigh in on current and future demand for new hires with 2- and 4-year STEM degrees. As professionals responsible for scouting, recruiting and hiring talent at Fortune 1000 companies, both STEM and non-STEM alike, these individuals are on the frontlines, tasked with assessing and filling their companies’ workforce needs. The survey asks the recruiters whether new hires with 2- and 4-year STEM degrees are as, more or less in demand than their peers without STEM degrees? Are more new STEM jobs being created at their companies than non-STEM jobs? Can they find adequate numbers of qualified candidates in a timely manner and how fierce is the competition for STEM degree holders? To answer these and other questions, the survey polled 150 talent recruiters at Fortune 1000 companies, both STEM and non-STEM alike. The survey also asks the recruiters about diversion in STEM, workforce diversity in the pipeline, the role of community colleges in developing the STEM pipeline and the desired skills and competencies of new hires.  相似文献   

14.
This formative design study examines how a program curriculum and implementation was emergently (re)designed in dynamic relation to the expressed emotions of teachers and students. The context was a yearlong afterschool game design program for STEM learning at an urban and public all-girls middle school. Using Randall Collins’ (Interaction ritual chains, Princeton University Press, Princeton, 2004) sociology of emotions framework, our analysis of field notes and video data reveal how the original intended curriculum hindered the generation of positive emotions, mutual foci of attention, and feelings of group solidarity—factors important in the generation of successful group interactions. In response to teacher and student expressed emotions, we took these factors as a guide for redesigning the program curriculum and implementation in order to foster a more positive emotional climate and redirect students’ positive emotions toward engagement in learning goals. This study’s implications point to the possibilities for designing curricula and program implementations to engender more emotionally responsive environments for STEM learning.  相似文献   

15.
Gaps between science, technology, engineering, and mathematics (STEM) education and required workplace skills have been identified in industry, academia, and government. Educators acknowledge the need to reform STEM education to better prepare students for their future careers. We pursue this growing interest in the skills needed for STEM disciplines and ask whether frameworks for 21st century skills and engineering education cover all of important STEM competencies. In this study, we identify important STEM competencies and evaluate the relevance of current frameworks applied in education using the standardized job-specific database operated and maintained by the US Department of Labor. Our analysis of the importance of 109 skills, types of knowledge and work activities, revealed 18 skills, seven categories of knowledge, and 27 work activities important for STEM workers. We investigate the perspectives of STEM and non-STEM job incumbents, comparing the importance of each skill, knowledge, and work activity for the two groups. We aimed to condense dimensions of the 52 key areas by categorizing them according to the Katz and Kahn (1978) framework and testing for inter-rater reliability. Our findings show frameworks for 21st century skills and engineering education do not encompass all important STEM competencies. Implications for STEM education programs are discussed, including how they can bridge gaps between education and important workplace competencies.  相似文献   

16.
The purpose of this study was to investigate and describe the mentorship experiences of Black student athletes attending undergraduate programs at a Predominantly White Institution in Higher Education (PWI-HE). The research site for this study was a co-educational public research institution (PWI-HE) with an approximate enrollment of 45,000 students. A total of six Black student athletes (five African American and one Jamaican) agreed to participate in this study. Four major interrelated and complex themes emerged from the data analyses. These themes were: (a) mentoring study habits and routines, (b) mentoring academic schedule and time management, (c) personal development within an isolated environment, and (d) family members’ support and encouragements. To better support Black student athletes at PWI-HEs, athletic department administrators, coaches, faculty, and all students should be encouraged to respect, value, and embrace the racial identities, origins, languages, and cultures of the student athletes that are being mentored.  相似文献   

17.
This paper begins by examining the profound impact of energy usage on our lives, and on every major sector of the economy. Then, the anticipated US energy needs by the year 2025 are presented based on the Department of Energys projections. The paper considers the much-touted National Energy Policy Report, and identifies a major flaw where the policy report neglects education as a contributor to solving future energy problems. The inextricable interaction between energy solutions and education is described, with emphasis on education policy as a potential vehicle for developing economically and commercially sustainable energy systems that have a minimal impact on the environment. With that said, an earnest argument is made as to the need to educate science, technology, engineering, and mathematics (STEM) proficient individuals for the energy technology development workforce, starting with the K-12 level. A framework for the aforementioned STEM education policies is presented that includes a sustained national awareness campaign, address the teachers salary issues, and addresses teacher quality issues. Moreover, the framework suggests a John Dewey-style learning-by-doing shift in pedagogy. Finally, the framework presents specific changes to the current national standards that would be valuable to the 21st century student.  相似文献   

18.
Course-based undergraduate research experiences (CUREs) may be a more inclusive entry point to scientific research than independent research experiences, and the implementation of CUREs at the introductory level may therefore be a way to improve the diversity of the scientific community.The U.S. scientific research community does not reflect America''s diversity. Hispanics, African Americans, and Native Americans made up 31% of the general population in 2010, but they represented only 18 and 7% of science, technology, engineering, and mathematics (STEM) bachelor''s and doctoral degrees, respectively, and 6% of STEM faculty members (National Science Foundation [NSF], 2013 ). Equity in the scientific research community is important for a variety of reasons; a diverse community of researchers can minimize the negative influence of bias in scientific reasoning, because people from different backgrounds approach a problem from different perspectives and can raise awareness regarding biases (Intemann, 2009 ). Additionally, by failing to be attentive to equity, we may exclude some of the best and brightest scientific minds and limit the pool of possible scientists (Intemann, 2009 ). Given this need for equity, how can our scientific research community become more inclusive?Current approaches to improving diversity in scientific research focus on graduating more STEM majors, but graduation with a STEM undergraduate degree alone is not ­sufficient for entry into graduate school. Undergraduate independent research experiences are becoming more or less a prerequisite for admission into graduate school and eventually a career in academia; a quick look at the recommendations for any of the top graduate programs in biology or science career–related websites state an expectation for ­undergraduate research and a perceived handicap if recommendation letters for graduate school do not include a ­discussion of the applicant''s research experience (Webb, 2007 ; Harvard ­University, 2013 ).Independent undergraduate research experiences have been shown to improve the retention of students in scientific research (National Research Council, 2003 ; Laursen et al., 2010 ; American Association for the Advancement of Science, 2011 ; Eagan et al., 2013 ). Participation in independent research experiences has been shown to increase interest in pursuing a PhD (Seymour et al., 2004 ; Russell et al., 2007 ) and seems to be particularly beneficial for students from historically underrepresented backgrounds (Villarejo et al., 2008 ; Jones et al., 2010 ; Espinosa, 2011 ; Hernandez et al., 2013 ). However, the limited number of undergraduate research opportunities available and the structure of how students are selected for these independent research lab positions exclude many students and can perpetuate inequities in the research community. In this essay, we highlight barriers faced by students interested in pursuing an undergraduate independent research experience and factors that impact how faculty members select students for these limited positions. We examine how bringing research experiences into the required course work for students could mitigate these issues and ultimately make research more inclusive.  相似文献   

19.
This case study explores young children’s understanding and application of the concept of volume through the practices of engineering design in a STEM activity. STEM stands for science, technology, engineering, and mathematics. However, engineering stands out as a challenging area to implement. In addition, most early engineering education research centers on curriculum and instruction rather than students’ understanding and application of models and content knowledge to a design project (Johri and Olds, Journal of Engineering Education, 100(1):151–185, 2011). For this study, we created a play-based STEM activity which helps students understand and apply the concept of volume in creating clay boats through the practices of engineering design. Three students voluntarily participated in this study. Data sources included interviews, photocopies of boats, and observation field notes which were analyzed using a comprehensive cross-case analysis. Findings indicate that the common pattern is rather intuitive when students define engineering problems using different criteria. Also, students’ solutions to engineering problems are associated with their experiential ideas of reality. How students express their understanding of volume is correlated to the way of their structuring volume. Lastly, students understand the concept of volume gradually while going through the practices of engineering design. Implications are discussed in terms of how engineering education contributes to students’ understanding of volume.  相似文献   

20.
Bronfenbrenner's (1977) Bronfenbrenner, U. (1977). Toward an experimental ecology of human development. American Psychologist, 32, 513531.[Crossref], [Web of Science ®] [Google Scholar] classic ecological theory is used as a framework to review the documented risk and protective factors associated with involvement in school-related bullying during childhood and adolescence. Microsystems such as peers (socialization during adolescence), family (violence, lack of parental monitoring), community (exposure to violence), and schools (teacher attitudes, climate) contribute to the rates of bullying perpetrated or experienced by youth. The interaction between components of the microsystem is referred to as the mesosystem, and offers insight into how contexts can exacerbate or buffer experiences for youth who are involved in bullying (e.g., family support can buffer impact of peer victimization). Recommendations are provided for teachers and other adults who work with youth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号