首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to design and retrofit a subway station to resist an internal blast,the distribution of blast loading and its effects on structures should be investigated firstly.In this paper,the behavior of a typical subway station subjected to different internal blast Ioadings was analyzed.It briefly introduced the geometric characteristics and material constitutive model of an existing two-layer and three-span frame subway station.Then three cases of different explosive charges were considered to analyze the dynamic responses of the structure.Finally,the maximum principal stress,displacement and velocity of the columns in the three cases were obtained and discussed.It concluded that the responses of the columns are sensitive to the charge of explosive and the distance from the detonation.It's also found that the stairs between the two layers have significant effects on the distribution of the maximum principal stress of the columns in the upper layer.The explicit dynamic nonlinear finite element software-ANSYS/LS-DYNA was used in this study.  相似文献   

2.
Simulation of Airblast Load and Its Effect on RC Structures   总被引:1,自引:0,他引:1  
In the analysis of a structure subjected to an explosion event, the determination of the blast load constitutes a crucial step. The effect of the blast load on the structure depends not only on the peak shock overpressure, but also the impulse (hence the duration). For structures with a regular geometry, the blast load may be fairly well estimated using appropriate empirical formulae; however, for more complex situations, a direct simulation using appropriate computational techniques is necessary. This paper presents a numerical simulation study on the prediction of the blast load in free air using a hydrocode, with focus on the sensitivity of the simulated blast load to the mesh grid size. The simulation results are compared with empirical predictions. It is found that the simulated blast load is sensitive to the mesh size, especially in the close-in range, and with a practically affordable mesh grid density, the blast load tends to be systematically underestimated. The study is extended to internal blast cases. An example concrete slab under internal explosion is analyzed using a coupled analysis scheme. The internal blast load from the simulation is examined and the response of the RC slab is commented.  相似文献   

3.
Numerical method is popular in analysing the blast wave propagation and interaction with structures.However,because of the extremely short duration of blast wave and energy trans-mission between different grids,the numerical results are sensitive to the finite element mesh size.Previous numerical simulations show that a mesh size acceptable to one blast scenario might not be proper for another case,even though the difference between the two scenarios is very small,indicating a simple numerical mesh size convergence test might not be enough to guarantee accu-rate numerical results.Therefore,both coarse mesh and fine mesh were used in different blast scenarios to investigate the mesh size effect on numerical results of blast wave propagation and interaction with structures.Based on the numerical results and their comparison with field test re-sults and the design charts in TM5-1300,a numerical modification method was proposed to correct the influence of the mesh size on the simulated results.It can be easily used to improve the accu-racy of the numerical results of blast wave propagation and blast loads on structures.  相似文献   

4.
The explosion inside tunnel would generate blast wave which transmits through the longitudinal tunnel. Because of the close-in effects of the tunnel and the reflection by the confining tunnel structure, blast wave propagation inside tunnel is distinguished from that in air. When the explosion happens inside tunnel, the overpressure peak is higher than that of explosion happening in air. The continuance time of the blast wave also becomes longer. With the help of the numerical simulation finite element software LS-DYNA, a three-dimensional nonlinear dynamic simulation analysis for an explosion experiment inside tunnel was carried out. LS-DYNA is a fully integrated analysis program specifically designed for nonlinear dynamics and large strain problems. Compared with the experimental results, the simulation results have made the material parameters of numerical simulation model available. By using the model and the same material parameters, many results were adopted by calculating the model under different TNT explosion dynamites. Then the method of dimensional analysis was used for the simulation results. As overpressures of the explosion blast wave are the governing factor in the tunnel responses, a formula for the explosion blast wave over-pressure at a certain distance from the detonation center point inside the tunnel was derived by using the dimensional analysis theory. By comparing the results computed by the formula with experimental results which were obtained before, the formula was proved to be very applicable at some instance. The research may be helpful to estimate rapidly the effect of internal explosion of tunnel on the structure.  相似文献   

5.
Terrorist attacks using improvised explosive devices (IED) can result in unreinforced ma-sonry (URM) wall collapse. Protecting URM wall from IED attack is very complicated. An effective solution to mitigate blast effects on URM wall is to retrofit URM walls with metallic foam sheets to absorb blast energy. However, mitigation of blast effects on metallic foam protected URM walls is currently in their infancy in the world. In this paper, numerical models are used to simulate the per-formance of aluminum foam protected URM walls subjected to blast loads. A distinctive model, in which mortar and brick units of masonry are discritized individually, is used to model the perform-ance of masonry and the contact between the masonry and steel face-sheet of aluminum foam is modelled using the interface element model. The aluminum foam is modelled by a nonlinear elas-toplastic material model. The material models for masonry, aluminum foam and interface are then coded into a finite element program LS-DYNA3D to perform the numerical calculations of response and damage of aluminum foam protected URM walls under airblast loads. Discussion is made on the effectiveness of the aluminum foam protected system for URM wall against blast loads.  相似文献   

6.
Terrorist attacks using improvised explosive devices (lED) can result in unreinforced masonry (URM) wall collapse.Protecting URM wall from lED attack is very complicated.An effective solution to mitigate blast effects on URM wall is to retrofit URM walls with metallic foam sheets to absorb blast energy.However,mitigation of blast effects on metallic foam protected URM walls is currently in their infancy in the world.In this palaer,numerical models are used to simulate the performance of aluminum foam protected URM walls subjected to blast loads.A distinctive model,in which mortar and brick units of masonry are discritized individually,is used to model the performance of masonry and the contact between the masonry and steel face-sheet of aluminum foam is modelled using the interface element model.The aluminum foam is modelled by a nonlinear elastoplastic material model.The material models for masonry,aluminum foam and interface are then coded into a finite element program LS-DYNA3D to perform the numerical calculations of response and damage of aluminum foam protected URM walls under airblast loads.Discussion is made on the effectiveness of the aluminum foam protected system for URM wall against blast loads.  相似文献   

7.
The progressive collapse of steel frame structures under the blast load was investigated using LS-DYNA. The multi-material Eulerian and Lagrangian coupling algorithm was adopted. A flu-id-structure coupling finite element model was established which consists of Lagrange element for simulating steel frame structures and concrete ground, multiple ALE element for simulating air and TNT explosive material. Numerical simulations of the blast pressure wave propagation, struc-tural dynamic responses and deformation, and progressive collapse of a five-story steel frame structure in the event of an explosion near above ground were performed. The numerical analysis showed that the Lagrangian and Eulerian coupling algorithm gave good simulations of the shock wave propagation in the mediums and blast load effects on the structure. The columns subjected to blast load may collapse by shear yielding rather than by flexural deformation. The columns and joints of steel beam to column in the front steel frame structure generated enormous plastic defor-mation subjected to intensive blast waves, and columns lost carrying capacity, subsequently lead-ing to the collapse of the whole structure. The approach coupling influence between struc-tural deformation and fluid load well simulated the progressive collapse process of structures, and provided an effective tool for analyzing the collapse mechanism of the steel frame structure under blast load.  相似文献   

8.
The progressive collapse of steel frame structures under the blast load was investigated using LS-DYNA.The multi-material Eulerian and Lagrangian coupling algorithm was adopted.A fluid-structure coupling finite element model was established which consists of Lagrange element for simulating steel frame structures and concrete ground,multiple ALE element for simulating air and TNT explosive material.Numerical simulations of the blast pressure wave propagation,structural dynamic responses and deformation,and progressive collapse of a five-story steel frame structure in the event of an explosion near above ground were performed.The numerical analysis showed that the Lagrangian and Eulerian coupling algorithm gave good simulations of the shock wave propagation in the mediums and blast load effects on the structure.The columns subjected to blast load may collapse by shear yielding rather than by flexural deformation.The columns and joints of steel beam to column in the front steel frame structure generated enormous plastic deformation subjected to intensive blast waves,and columns lost carrying capacity,subsequently leading to the collapse of the whole structure.The approach coupling influence between structural deformation and fluid load well simulated the progressive collapse process of structures,and provided an effective tool for analyzing the collapse mechanism of the steel frame structure under blast load.  相似文献   

9.
Plane charge explosion technique (PCET) is one of the major techniques frequently used in large-scale blast-resistant structure tests. An FEM model was established, which can simulate the process of air releasing from the blast cavity. The effects of the charge density, the interval of the charge strip, the distance of the charges from the structure, and the mass of backfill soil on the overpressures applied on the tested structures were analyzed by the FEM model. The quantitative relationships between the peak value and the duration of the overpressure and the above-mentioned affecting parameters were established. Agreement between numerical results and the test data was obtained.  相似文献   

10.
A numerical model using the coupled smoothed panicle hydrodynamics-finite element method (SPH-FEM) approach is presented for analysis of structures under blast loads. The analyses on two numerical cases, one for free field explosive and the other for structural response under blast loads, are performed to model the whole processes from the propagation of the pressure wave to the response of structures. Based on the simulation, it is concluded that this model can be used for reasonably accurate explosive analysis of structures. The resulting information would be valuable for protecting structures under blast loads.  相似文献   

11.
Current practice in analysis and design of blast doors subjected to blast loading considers only simple boundary conditions and material properties. The boundary conditions and material properties, in fact, have considerable influence on the response of blast doors subjected to blast loading. In this paper, the dynamic responses of a reinforced concrete arched blast door under blast loading were analyzed by the finite element program ABAQUS, combined with a previously developed elasto-viscoplastic rate-sensitive material model. And the effect of the surrounding rock mass and contact effect of the doorframe were also taken into account in the simulation. It is demonstrated that the strain-rate effect has considerable influence on the response of reinforced concrete blast door subjected to blast loading and must be taken into account in the analysis.  相似文献   

12.
Simulating blast and fragment loading simultaneously in a single computation requires the combined use of multiple states of the art solvers. A pipe bomb is an example of simple improvised explosive device (IED) that consists of a piece of pipe filled with explosive material and capped at both ends. To simulate the explosion of a pipe bomb and the damage it causes, a coupled multisolver approach based upon finite element and finite volume methods is applied. The numerical calculation presented demonstrates the ability of ANSYS AUTODYN(?) to correctly simulate the threats of lEDs and provides insight into how the most significant physical phenomena affect the results.  相似文献   

13.
Numerical analysis of dynamic behavior of RC slabs under blast loading   总被引:2,自引:0,他引:2  
In Order to reduce economic and life losses due to terrorism or accidental explosion threats,reinforced concrete(RC)slabs of buildings need to be designed or retrofitted to resist blast loading.In this paper the dynamic behavior Of RC slabs under blast loading and its influencing factors are studied.The numerical model of an RC slab subjected to blast loading is established using the explicit dynamic analysis software.Both the strain rate effect and the damage accumulation are taken into account in the material model.The dynamic responses of the RC slab subiected to blast loading are analyzed,and the influence of concrete strength,thickness and reinforcement ratio on the behavior of the RC slab under blast loading iS numerically investigated.Based on the numerical results.some principles for blast-resistant design and retrofitting are proposed to improve the behavior of the RC slab subjected to blast loading.  相似文献   

14.
In the present paper, a dynamic plastic damage model for concrete has been employed to estimate responses of a reinforced concrete slab subjected to blast loading. The interaction between the blast wave and the concrete slab is considered in 3D simulation. In the first stage, the initial detonation and blast wave propagation is modelled in 2D simulation before the blast wave reaches the concrete slab, then the results obtained from 2D calculation are remapped to a 3D model. The calculated blast load is compared with that obtained from TM5-1300. Numerical results of the concrete slab response are compared with the explosive test carried out-in the Weapons System Division, Defence Science and Technology Organisation, Department of Defence, Australia.  相似文献   

15.
In the present paper, a dynamic plastic damage model for concrete has been employed to estimate responses of a reinforced concrete slab subjected to blast loading. The interaction between the blast wave and the concrete slab is considered in 3D simulation. In the first stage, the initial detonation and blast wave propagation is modelled in 2D simulation before the blast wave reaches the concrete slab, then the results obtained from 2D calculation are remapped to a 3D model. The calculated blast load is compared with that obtained from TM5-1300. Numerical results of the concrete slab response are compared with the explosive test carried out- in the Weapons System Division, Defence Science and Technology Organisation, Department of Defence, Australia.  相似文献   

16.
城市地下过街通道是城市重要的交通系统组成部分,也经常会成为恐怖分子爆炸袭击的对象。为了更好的了解爆炸冲击波在地下过街通道中的传播规律,本文通过数值模拟分析了13KG炸药在通道爆炸后冲击波的传播。分析过程中分别考虑了炸药起爆位置及通道顶盖对冲击波传播的影响。分析结果表明当TNT在通道内起爆后,通道顶部的角落将受到更大的冲击波压力作用,当冲击波从出口向外传播时将发生明显的射流现象;当通道出口有顶盖时,炸药在出口的起爆将明显加强通道内部及出口梯道的压力峰值。  相似文献   

17.
Numerical simulation of TNT underwater explosion was carried out with AUTODYN soft-ware. Influences of artificial viscosity and mesh density on simulation results were discussed. Deto-nation waves in explosive and shock wave in water during early time of explosion are high frequency waves. Fine meshes (less than 1 mm) in explosive and water nearby, and small linear viscosity co-efficients and quadratic viscosity coefficients (0.02 and 0.1 respectively, 1/10 of default values) are needed in numerical simulation model. According to these rules, numerical computing pressure profiles can match well with those calculated by Zamyshlyayev empirical formula. Otherwise peak pressure would be smeared off and upstream relative errors would be cumulated downstream to make downstream peak pressure lower.  相似文献   

18.
Numerical simulation of TNT underwater explosion was carried out with AUTODYN software.Influences of artificial viscosity and mesh density on simulation results were discussed.Detonation waves in explosive and shock wave in water during early time of explosion are high frequency waves.Fine meshes (less than 1 mm) in explosive and water nearby,and small linear viscosity coefficients and quadratic viscosity coefficients (0.02 and 0.1 respectively,1/10 of default values) are needed in numerical simulation model.According to these rules,numerical computing pressure profiles can match well with those calculated by Zamyshlyayev empirical formula.Otherwise peak pressure would be smeared off and upstream relative errors would be cumulated downstream to make downstream peak pressure lower.  相似文献   

19.
A probabilistic risk assessment procedure is developed which can predict risks of explosive blast damage to built infrastructure, and when combined with life-cycle cost analysis, the procedure can be used to optimise blast mitigation strategies. The paper focuses on window glazing since this is a load-capacity system which, when subjected to blast loading, has caused significant damage and injury to building occupants. Structural reliability techniques are used to derive blast reliability curves for annealed and toughened glazing subjected to explosive blast for a variety of threat scenarios. The probabilistic analyses include the uncertainties associated with blast modelling, glazing response and glazing failure criteria. Damage risks are calculated for an individual window and for windows in the facade of a multi-storey commercial building. The paper shows an illustrative example of how this information, when combined with risk-based decision-making criteria, can be used to optimise blast mitigation strategies.  相似文献   

20.
In the investigation of accidental explosion scene,the damage on the glass is one of the typical traces which can be used to decide the characteristic of the explosion source.To analyze the response of glass under the blast load,a numerical model was developed.In the model,the brittleness glass model was adopted.A 'node release' method,which had some special merits compared with the erosion method was used to simulate the rupture of the glass In the calculation,several problems which play major role in the response of the glass were discussed.The velocity and the displacement of the glass fragment were two major factors.The numerical results are very helpful for the design and hazard assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号