首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
以Iwan改进的尾流振子模型为基础,给出了剪切流中水中悬浮隧道锚索横向涡激振动的工程分析方法,分析了悬浮隧道重浮比以及剪切流特性对锚索涡激响应的影响。计算结果表明,悬浮隧道重浮比的改变,使锚索各阶模态的频锁区域分布发生变化,从而改变了结构的涡激振动响应;剪切流陡度参数的增大会使锚索涡激响应的幅值减小,若使用均匀流场代替剪切流场计算悬浮隧道锚索的涡激振动,会过高估计其响应幅值。  相似文献   

2.
梯度矢量流主动轮廓线模型微广泛应用于数字图像处理和计算机视觉,但其在实际应用中易受干扰噪声及虚假边缘的影响.并且计算速度也不尽如人意。在结合多分辨率算法与多尺度图像分析的基础上,利用归一化的梯度矢量流场,提出了一种改进的主动轮廓线模型。实验表明,该方法较好地限制了非目标边缘和噪声干扰的影响,加快了模型收敛的遥度,具有较好的分割效果。  相似文献   

3.
为了解蒸汽射流除冰过程中喷嘴几何参数对除冰效率的影响,利用ICEM CFD和FLUENT软件对蒸汽射流喷嘴的几何参数(圆锥包角、长径比)进行外部流场仿真分析。结果表明:当蒸汽射流喷嘴圆锥包角为15度、长径比为1时具有较高的除冰效率。  相似文献   

4.
钝体绕流一直是流体力学领域内的经典问题,了解其流动机理和水动力规律,具有明显的工程应用价值。本文利用格子Boltzmann方法,采用基于虚拟平衡态分布函数的BFL格式处理不规则复杂边界。通过建立不同钝体绕流的物理模型,对比分析边界对流场的速度矢量分布图以及升阻力系数的影响。结果表明:钝体形状对绕流特性有明显的影响,主要表现在再附区域的长度以及流场的速度分布,其中方柱绕流表现最为明显。  相似文献   

5.
徐前  陈玉龙  金杨福 《科技通报》2019,35(5):1-7,12
采用粗粒化分子动力学模拟方法研究了柱状两嵌段共聚物/纳米粒子复合薄膜在剪切场下的相结构转变以及边界滑移行为。重点考察了表观剪切速率γ_a、纳米粒子以及纳米粒子与聚合物间相互作用强度ε_(A-NP)等因素的影响。通过分析薄膜内部的微观相结构、速度梯度分布、有效剪切速率以及各相间的相互作用能,探究了嵌段共聚物纳米复合体系的界面滑移机理。研究显示,纳米粒子的添加及纳米粒子与聚合物间相互作用强度的增大,均会使薄膜粘度升高,阻碍了其随剪切运动的能力,从而使体系出现急剧的边界滑移现象。当ε_(A-NP)20ε时,严重的边界滑移现象甚至使剪切作用无法有效地诱导纳米复合薄膜内部出现有序相结构。  相似文献   

6.
利用CFD数值模拟技术,对涵道比为9的无阻流门式反推力装置实验模型的流场进行数值模拟.分析了不同落压比下,反推力效率、叶栅流量比和注气流量比随注气缝参数变化的规律.根据计算结果,详细分析了反推力装置流场特征,指出二次流注气位置、注气角度和注气缝宽度对反推力装置性能有较大的影响.根据分析结果,确定寻找最佳注气缝参数的一般性规律.  相似文献   

7.
梁发超  刘黎明 《资源科学》2010,32(11):2138-2144
地形因素是影响土地利用空间布局的重要因素之一。以湖南省浏阳市为例,应用TM遥感影像数据及DEM数据,在ArcGIS空间分析模块支持下,采用高程梯度、坡地梯度和地形梯度三种方法对比研究,通过分析不同土地利用类型在三种地形梯度上的分布指数,揭示研究区域的土地利用类型分布的模式及其与地形因素之间的对应关系。结果表明:耕地、园地、其他农用地和建设用地主要分布在较低的地形梯度上,分布指数随着地形梯度的增大而减少,逐渐趋向于0,以上同种土地利用类型在三种地形梯度上的分布具有一定的相似性;林地主要分布在中高等级高程、较高坡度和较高等级地形位上,而未利用地分布区域却相反;对三种研究方法的比较表明,地形位综合了高程和坡度的信息,能更方便地反映土地利用类型随地形变化的分布趋势;而地形位指数则可以更有效地反映土地利用类型的分布特征。本研究可为区域土地利用布局研究提供一种可行的定量分析方法。  相似文献   

8.
在大青山区相近立地条件下选择不同密度的林分设标准地,对30a生的油松人工林生长状况与林分密度的关系进行研究,结果表明:30a生油松人工林胸径随密度的增大逐渐减小;枝下高随密度的增大而递增;单株材积随密度的增加而递减,但密度增大到一定程度后其变化不明显,而蓄积量随密度的增加呈增加趋势;高径比随密度的增加而明显递增。  相似文献   

9.
利用FLUENT软件对固体火箭发动机被动引射高空模拟试车系统中的扩压器进行数值计算.计算了含与不合凝相颗粒两种情况下的流场结构,并对两种情况下的流场进行了对比分析,探讨了高模试车台扩压器的影响因素.结果表明:扩压器中存在复杂的激波结构,加入粒子后,流场的速度相对降低,同时颗粒与激波的相互作用在局部改变了激波原有的分布;小粒径颗粒随流性好,分布范围广,大粒径颗粒随流性差,主要分布在轴线附近.  相似文献   

10.
研究室内气溶胶纳米粒径颗粒物的环境行为和污染特征对室内空气质量的影响具有重要意义。本项工作采用WPSTM Model 1000XP宽范围粒径谱仪测量了粒径介于10~10000 nm之间的气溶胶纳米颗粒物。主要探讨了粒径在10~500 nm间的气溶胶纳米颗粒物在不同室内条件的粒径分布特征。结果发现,超细颗粒物(纳米粒径10~500 nm)对总粒子数浓度贡献较大,而细颗粒物(500 nm~10 μm)对总粒子质量浓度贡献较大,导致室内颗粒物粒子质量浓度通常比室外低,表现出室内污染以纳米粒径超细颗粒物为主的特点。抽烟明显增大纳米颗粒物粒子数浓度和粒子质量浓度。研究表明,室内空气质量对人体健康的影响可能超过室外,应当引起足够的重视和关注。  相似文献   

11.
This paper presents a numerical study of DC-biased AC-electrokinetic (DC-biased ACEK) flow over a pair of symmetrical electrodes. The flow mechanism is based on a transverse conductivity gradient created through incipient Faradaic reactions occurring at the electrodes when a DC-bias is applied. The DC biased AC electric field acting on this gradient generates a fluid flow in the form of vortexes. To understand more in depth the DC-biased ACEK flow mechanism, a phenomenological model is developed to study the effects of voltage, conductivity ratio, channel width, depth, and aspect ratio on the induced flow characteristics. It was found that flow velocity on the order of mm/s can be produced at higher voltage and conductivity ratio. Such rapid flow velocity is one of the highest reported in microsystems technology using electrokinetics.  相似文献   

12.
Pressure-driven transport of particles through a symmetric converging-diverging microchannel is studied by solving a coupled nonlinear system, which is composed of the Navier–Stokes and continuity equations using the arbitrary Lagrangian–Eulerian finite-element technique. The predicted particle translation is in good agreement with existing experimental observations. The effects of pressure gradient, particle size, channel geometry, and a particle’s initial location on the particle transport are investigated. The pressure gradient has no effect on the ratio of the translational velocity of particles through a converging-diverging channel to that in the upstream straight channel. Particles are generally accelerated in the converging region and then decelerated in the diverging region, with the maximum translational velocity at the throat. For particles with diameters close to the width of the channel throat, the usual acceleration process is divided into three stages: Acceleration, deceleration, and reacceleration instead of a monotonic acceleration. Moreover, the maximum translational velocity occurs at the end of the first acceleration stage rather than at the throat. Along the centerline of the microchannel, particles do not rotate, and the closer a particle is located near the channel wall, the higher is its rotational velocity. Analysis of the transport of two particles demonstrates the feasibility of using a converging-diverging microchannel for passive (biological and synthetic) particle separation and ordering.  相似文献   

13.
Particle focusing is an essential step in a wide range of applications such as cell counting and sorting. Recently, viscoelastic particle focusing, which exploits the spatially non-uniform viscoelastic properties of a polymer solution under Poiseuille flow, has attracted much attention because the particles are focused along the channel centerline without any external force. Lateral particle migration in polymer solutions in square channels has been studied due to its practical importance in lab-on-a-chip applications. However, there are still many questions about how the rheological properties of the medium alter the equilibrium particle positions and about the flow rate ranges for particle focusing. In this study, we investigated lateral particle migration in a viscoelastic flow of DNA solution in a square microchannel. The elastic property is relevant due to the long relaxation time of a DNA molecule, even when the DNA concentration is extremely low. Further, the shear viscosity of the solution is essentially constant irrespective of shear rate. Our current results demonstrate that the particles migrate toward the channel centerline and the four corners of a square channel in the dilute DNA solution when the inertia is negligible (elasticity-dominant flow). As the flow rate increases, the multiple equilibrium particle positions are reduced to a single file along the channel centerline, due to the elasto-inertial particle focusing mechanism. The current results support that elasto-inertial particle focusing mechanism is a universal phenomenon in a viscoelastic fluid with constant shear viscosity (Boger fluid). Also, the effective flow rate ranges for three-dimensional particle focusing in the DNA solution were significantly higher and wider than those for the previous synthetic polymer solution case, which facilitates high throughput analysis of particulate systems. In addition, we demonstrated that the DNA solution can be applied to focus a wide range of particle sizes in a single channel and also align red blood cells without any significant deformation.  相似文献   

14.
In this paper, 3D particle focusing in a straight channel with asymmetrical expansion–contraction cavity arrays (ECCA channel) is achieved by exploiting the dean-flow-coupled elasto-inertial effects. First, the mechanism of particle focusing in both Newtonian and non-Newtonian fluids was introduced. Then particle focusing was demonstrated experimentally in this channel with Newtonian and non-Newtonian fluids using three different sized particles (3.2 μm, 4.8 μm, and 13 μm), respectively. Also, the effects of dean flow (or secondary flow) induced by expansion–contraction cavity arrays were highlighted by comparing the particle distributions in a single straight rectangular channel with that in the ECCA channel. Finally, the influences of flow rates and distances from the inlet on focusing performance in the ECCA channel were studied. The results show that in the ECCA channel particles are focused on the cavity side in Newtonian fluid due to the synthesis effects of inertial and dean-drag force, whereas the particles are focused on the opposite cavity side in non-Newtonian fluid due to the addition of viscoelastic force. Compared with the focusing performance in Newtonian fluid, the particles are more easily and better focused in non-Newtonian fluid. Besides, the Dean flow in visco-elastic fluid in the ECCA channel improves the particle focusing performance compared with that in a straight channel. A further advantage is three-dimensional (3D) particle focusing that in non-Newtonian fluid is realized according to the lateral side view of the channel while only two-dimensional (2D) particle focusing can be achieved in Newtonian fluid. Conclusively, this novel Dean-flow-coupled elasto-inertial microfluidic device could offer a continuous, sheathless, and high throughput (>10 000 s−1) 3D focusing performance, which may be valuable in various applications from high speed flow cytometry to cell counting, sorting, and analysis.  相似文献   

15.
Passive particle focusing based on inertial microfluidics was recently introduced as a high-throughput alternative to active focusing methods that require an external force field to manipulate particles. In inertial microfluidics, dominant inertial forces cause particles to move across streamlines and occupy equilibrium positions along the faces of walls in flows through straight micro channels. In this study, we systematically analyzed the addition of secondary Dean forces by introducing curvature and show how randomly distributed particles entering a simple u-shaped curved channel are focused to a fixed lateral position exiting the curvature. We found the lateral particle focusing position to be fixed and largely independent of radius of curvature and whether particles entering the curvature are pre-focused (at equilibrium) or randomly distributed. Unlike focusing in straight channels, where focusing typically is limited to channel cross-sections in the range of particle size to create single focusing point, we report here particle focusing in a large cross-section area (channel aspect ratio 1:10). Furthermore, we describe a simple u-shaped curved channel, with single inlet and four outlets, for filtration applications. We demonstrate continuous focusing and filtration of 10 μm particles (with >90% filtration efficiency) from a suspension mixture at throughputs several orders of magnitude higher than flow through straight channels (volume flow rate of 4.25 ml/min). Finally, as an example of high throughput cell processing application, white blood cells were continuously processed with a filtration efficiency of 78% with maintained high viability. We expect the study will aid in the fundamental understanding of flow through curved channels and open the door for the development of a whole set of bio-analytical applications.  相似文献   

16.
利用双流体模型和扰动速度势理论,推得位于射流喷射区高浓度悬浮固粒的固气扰动复速度比值方程,通过数值计算,得到了不同雷诺数及固粒属性下固气扰动复速度比值曲线,分析该曲线,得到了关于流场雷诺数及固粒等效斯托克斯数对固粒跟随气流的扰动性能影响的结论,这些结论是在计入气流粘性的条件下得到的,对于两相射流发展的认识和工程实际中实施对两相射流场的人工控制有重要意义。  相似文献   

17.
Integrating different steps on a chip for cell manipulations and sample preparation is of foremost importance to fully take advantage of microfluidic possibilities, and therefore make tests faster, cheaper and more accurate. We demonstrated particle manipulation in an integrated microfluidic device by applying hydrodynamic, electroosmotic (EO), electrophoretic (EP), and dielectrophoretic (DEP) forces. The process involves generation of fluid flow by pressure difference, particle trapping by DEP force, and particle redirect by EO and EP forces. Both DC and AC signals were applied, taking advantages of DC EP, EO and AC DEP for on-chip particle manipulation. Since different types of particles respond differently to these signals, variations of DC and AC signals are capable to handle complex and highly variable colloidal and biological samples. The proposed technique can operate in a high-throughput manner with thirteen independent channels in radial directions for enrichment and separation in microfluidic chip. We evaluated our approach by collecting Polystyrene particles, yeast cells, and E. coli bacteria, which respond differently to electric field gradient. Live and dead yeast cells were separated successfully, validating the capability of our device to separate highly similar cells. Our results showed that this technique could achieve fast pre-concentration of colloidal particles and cells and separation of cells depending on their vitality. Hydrodynamic, DC electrophoretic and DC electroosmotic forces were used together instead of syringe pump to achieve sufficient fluid flow and particle mobility for particle trapping and sorting. By eliminating bulky mechanical pumps, this new technique has wide applications for in situ detection and analysis.  相似文献   

18.
In this paper, we use a spiral channel inertial focusing device for isolation and purification of chromosomes, which are highly asymmetric. The method developed is proposed as a sample preparation process for transchromosomic research. The proposed microfluidics-based chromosome separation approach enables rapid, label-free isolation of bioactive chromosomes and is compatible with chromosome buffer. As part of this work, particle force analysis during the separation process is performed utilizing mathematic models to estimate the expected behavior of chromosomes in the channel and the model validated with experiments employing fluorescent beads. The chromosome sample is further divided into subtypes utilizing fluorescent activated cell sorting , including small condensed chromosomes, single chromosomes, and groups of two chromosomes (four sister chromatids). The separation of chromosome subtypes is realized based on their shape differences in the spiral channel device under high flow rate conditions. When chromosomes become aligned in the shear flow, the balance between the inertial focusing force and the Dean flow drag force is determined by the chromosome projection area and aspect ratio, or shape difference, leading to different focusing locations in the channel. The achieved results indicate a new separation regime in inertial microfluidics that can be used for the separation of non-spherical particles based on particle aspect ratios, which could potentially be applied in fields such as bacteria subtype separation and chromosome karyotyping.  相似文献   

19.
Electrokinetic transport of cylindrical cells under dc electric fields in a straight microfluidic channel is experimentally and numerically investigated with emphasis on the dielectrophoretic (DEP) effect on their orientation variations. A two-dimensional multiphysics model, composed of the Navier–Stokes equations for the fluid flow and the Laplace equation for the electric potential defined in an arbitrary Lagrangian–Eulerian framework, is employed to capture the transient electrokinetic motion of cylindrical cells. The numerical predictions of the particle transport are in quantitative agreement with the obtained experimental results, suggesting that the DEP effect should be taken into account to study the electrokinetic transport of cylindrical particles even in a straight microchannel with uniform cross-sectional area. A comprehensive parametric study indicates that cylindrical particles would experience an oscillatory motion under low electric fields. However, they are aligned with their longest axis parallel to the imposed electric field under high electric fields due to the induced DEP effect.  相似文献   

20.
Field-free particle focusing in microfluidic plugs   总被引:1,自引:0,他引:1  
Kurup GK  Basu AS 《Biomicrofluidics》2012,6(2):22008-2200810
Particle concentration is a key unit operation in biochemical assays. Although there are many techniques for particle concentration in continuous-phase microfluidics, relatively few are available in multiphase (plug-based) microfluidics. Existing approaches generally require external electric or magnetic fields together with charged or magnetized particles. This paper reports a passive technique for particle concentration in water-in-oil plugs which relies on the interaction between particle sedimentation and the recirculating vortices inherent to plug flow in a cylindrical capillary. This interaction can be quantified using the Shields parameter (θ), a dimensionless ratio of a particle’s drag force to its gravitational force, which scales with plug velocity. Three regimes of particle behavior are identified. When θ is less than the movement threshold (region I), particles sediment to the bottom of the plug where the internal vortices subsequently concentrate the particles at the rear of the plug. We demonstrate highly efficient concentration (∼100%) of 38 μm glass beads in 500 μm diameter plugs traveling at velocities up to 5 mm/s. As θ is increased beyond the movement threshold (region II), particles are suspended in well-defined circulation zones which begin at the rear of the plug. The length of the zone scales linearly with plug velocity, and at sufficiently large θ, it spans the length of the plug (region III). A second effect, attributed to the co-rotating vortices at the rear cap, causes particle aggregation in the cap, regardless of flow velocity. Region I is useful for concentrating/collecting particles, while the latter two are useful for mixing the beads with the solution. Therefore, the two key steps of a bead-based assay, concentration and resuspension, can be achieved simply by changing the plug velocity. By exploiting an interaction of sedimentation and recirculation unique to multiphase flow, this simple technique achieves particle concentration without on-chip components, and could therefore be applied to a range of heterogeneous screening assays in discrete nl plugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号