首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundRhodotorula glutinis is capable of synthesizing numerous valuable metabolites with extensive potential industrial usage. This paper reports the effect of initial culture medium pH on growth and protein, lipid, and carotenoid biosynthesis by R. glutinis.ResultsThe highest biomass yield was obtained in media with pH 4.0–7.0, and the value after 72 h was 17.2–19.4 gd.w./L. An initial pH of the medium in the range of 4.0–7.0 has no significant effect on the protein (38.5–41.3 g/100 gd.w.), lipid (10.2–12.7 g/100 gd.w.), or carotenoid (191.7–202.9 μg/gd.w.) content in the biomass or on the profile of synthesized fatty acids and carotenoids. The whole pool of fatty acids was dominated by oleic (48.1–53.4%), linoleic (21.4–25.1%), and palmitic acids (13.0–15.8%). In these conditions, the yeast mainly synthesized torulene (43.5–47.7%) and β-carotene (34.7–38.6%), whereas the contribution of torularhodin was only 12.1–16.8%. Cultivation in medium with initial pH 3.0 resulted in a reduction in growth (13.0 gd.w./L) and total carotenoid (115.8 μg/gd.w.), linoleic acid (11.5%), and torularhodin (4.5%) biosynthesis.ConclusionThe different values of initial pH of the culture medium with glycerol and deproteinized potato wastewater had a significant effect on the growth and protein, lipid, and carotenoid biosynthesis by R. glutinis.  相似文献   

2.
BackgroundBiohydrogen effluent contains a high concentration of volatile fatty acid (VFA) mainly as butyric, acetic, lactic and propionic acids. The presence of various VFAs (mixture VFAs) and their cooperative effects on two-stage biohythane production need to be further studied. The effect of VFA concentrations in biohydrogen effluent of palm oil mill effluent (POME) on methane yield in methane stage of biohythane production was investigated.ResultsThe methane yield obtained in low VFA loading (0.9 and 1.8 g/L) was 15–20% times greater than that of high VFA loading (3.6 and 4.7 g/L). Butyric acid at high concentrations (8 g/L) has the individual significantly negative effect the methane production process (P < 0.05). Lactic, acetic and butyric acid mixed with propionic acid at a concentration higher than 0.5 g/L has an interaction significantly negative effect on the methanogenesis process (P < 0.05). Inhibition condition had a negative effect on both bacteria and archaea with inhibited on Geobacillus sp., Thermoanaerobacterium thermosaccharolyticum, Methanoculleus thermophilus and Methanothermobacter delfuvii resulting in low methane yield.ConclusionPreventing the high concentration of butyric acid, and propionic acid in the hydrogenic effluent could enhance methane production in two-stage anaerobic digestion for biohythane production.  相似文献   

3.
BackgroundThe effect of diverse oxygen transfer coefficient on the l-erythrulose production from meso-erythritol by a newly isolated strain, Gluconobacter kondonii CGMCC8391 was investigated. In order to elucidate the effects of volumetric mass transfer coefficient (kLa) on the fermentations, baffled and unbaffled flask cultures, and fed-batch cultures were developed in present work.ResultsWith the increase of the kLa value in the fed-batch culture, l-erythrulose concentration, productivity and yield were significantly improved, while cell growth was not the best in the high kLa. Thus, a two-stage oxygen supply control strategy was proposed, aimed at achieving high concentration and high productivity of l-erythrulose. During the first 12 h, kLa was controlled at 40.28 h-1 to obtain high value for cell growth, subsequently kLa was controlled at 86.31 h-1 to allow for high l-erythrulose accumulation.ConclusionsUnder optimal conditions, the l-erythrulose concentration, productivity, yield and DCW reached 207.9 ± 7.78 g/L, 6.50 g/L/h, 0.94 g/g, 2.68 ± 0.17 g/L, respectively. At the end of fermentation, the l-erythrulose concentration and productivity were higher than those in the previous similar reports.  相似文献   

4.
BackgroundEndophytic bacteria are ubiquitous in all plant species contributing in host plant's nutrient uptake and helping the host to improve its growth. Moringa peregrina which is a medicinal plant, growing in arid region of Arabia, was assessed for the presence of endophytic bacterial strains.ResultsPCR amplification and sequencing of 16S rRNA of bacterial endophytes revealed the 5 endophytic bacteria, in which 2 strains were from Sphingomonas sp.; 2 strains from Bacillus sp. and 1 from Methylobacterium genus. Among the endophytic bacterial strains, a strain of Bacillus subtilis LK14 has shown significant prospects in phosphate solubilization (clearing zone of 56.71 mm after 5 d), ACC deaminase (448.3 ± 2.91 nM α-ketobutyrate mg- 1 h- 1) and acid phosphatase activity (8.4 ± 1.2 nM mg- 1 min- 1). The endophytic bacteria were also assessed for their potential to produce indole-3-acetic acid (IAA). Among isolated strains, the initial spectrophotometry analysis showed significantly higher IAA production by Bacillus subtilis LK14. The diurnal production of IAA was quantified using multiple reactions monitoring method in UPLC/MS–MS. The analysis showed that LK14 produced the highest (8.7 μM) IAA on 14th d of growth. Looking at LK14 potentials, it was applied to Solanum lycopersicum, where it significantly increased the shoot and root biomass and chlorophyll (a and b) contents as compared to control plants.ConclusionThe study concludes that using endophytic bacterial strains can be bio-prospective for plant growth promotion, which might be an ideal strategy for improving growth of crops in marginal lands.  相似文献   

5.
BackgroundThe selection of new yeast strains could lead to improvements in bioethanol production. Here, we have studied the fermentative capacity of different auxotrophic mutants of Saccharomyces cerevisiae, which are routinely used as hosts for the production of heterologous proteins. It has recently been found that these strains exhibit physiological alterations and peculiar sensitivities with respect to the parental prototrophic strains from which they derive. In this work the performance of auxotrophic S. cerevisiae CEN.PK strains was compared to the corresponding prototrophic strain, to S. cerevisiae T5bV, a strain isolated from grape must and to another auxotrophic strain, S. cerevisiae BY4741.ResultsThe results indicate that the fermentative capacity of strains grown in 2% glucose was similar in all the strains tested. However, in 15% initial glucose, the auxotrophic strains exhibited a more than doubled ethanol yield on biomass (10 g g- 1dw) compared to the prototrophic strains (less than 5 g g- 1dw). Other tests have also evidenced that in medium depletion conditions, ethanol production continues after growth arrest.ConclusionsThe results highlight the capacity of auxotrophic yeast strains to produce ethanol per mass unit, in a higher amount with respect to the prototrophic ones. This leads to potential applications for auxotrophic strains of S. cerevisiae in the production of ethanol in both homogeneous and heterogeneous phases (immobilized systems). The higher ethanol yield on biomass would be advantageous in immobilized cell systems, as a reduced yeast biomass could greatly reduce the mass transfer limitations through the immobilization matrix.  相似文献   

6.
BackgroundXylitol is a five carbons polyol with promising medical applications. It can be obtained from chemical d-xylose reduction or by microbial fermentation of Sugarcane Bagasse Hemicellulosic Hydrolysate. For this last process, some microbial inhibitors, as furfural, constitute severe bottleneck. In this case, the use of strains able to produce xylitol simultaneously to furfural neutralization is an interesting alternative. A wild-type strain of Geotrichum sp. was detected with this ability, and its performance in xylitol production and furfural consumption was evaluated. Furthermore, were analyzed its degradation products.ResultsGeotrichum sp. produced xylitol from d-xylose fermentation with a yield of 0.44 g·g-1. Furfural was fully consumed in fermentation assay and when provided in the medium until concentration of 6 g·L-1. The furfural degradation product is not an identified molecule, presenting a molecular weight of 161 g·mol-1, an uncommon feature for the microbial metabolism of this product.ConclusionThis strain presents most remarkable potential in performing furfural consumption simultaneous to xylitol production. Subsequent efforts must be employed to establish bioprocess to simultaneous detoxification and xylitol production by Geotrichum sp.  相似文献   

7.
BackgroundSulphur-oxidizing microorganisms are widely used in the biofiltration of total reduced sulphur compounds (odorous and neurotoxic) produced by industries such as the cellulose and petrochemical industries, which include high-temperature process steps. Some hyperthermophilic microorganisms have the capability to oxidize these compounds at high temperatures (> 60°C), and archaea of this group, for example, Sulfolobus metallicus, are commonly used in biofiltration technology.ResultsIn this study, a hyperthermophilic sulphur-oxidizing strain of archaea was isolated from a hot spring (Chillán, Chile) and designated as M1. It was identified as archaea of the genus Sulfolobus (99% homology with S. solfataricus 16S rDNA). Biofilms of this culture grown on polyethylene rings showed an elemental sulphur oxidation rate of 95.15 ± 15.39 mg S l-1 d-1, higher than the rate exhibited by the biofilm of the sulphur-oxidizing archaea S. metallicus (56.8 ± 10.91 mg l-1 d-1).ConclusionsThe results suggest that the culture M1 is useful for the biofiltration of total reduced sulphur gases at high temperatures and for other biotechnological applications.  相似文献   

8.
BackgroundBiomineralization is a significant process performed by living organisms in which minerals are produced through the hardening of biological tissues. Herein, we focus on calcium carbonate precipitation, as part of biomineralization, to be used in applications for environmental protection, material technology, and other fields. A strain GM-1, Microbacterium sp. GM-1, isolated from active sludge, was investigated for its ability to produce urease and induce calcium carbonate precipitation in a metabolic process.ResultsIt was discovered that Microbacterium sp. GM-1 resisted high concentrations of urea up to 60 g/L. In order to optimize the calcification process of Microbacterium sp. GM-1, the concentrations of Ni2 + and urea, pH value, and culture time were analyzed through orthogonal tests. The favored calcite precipitation culture conditions were as follows: the concentration of Ni2 + and urea were 50 μM and 60 g/L, respectively, pH of 10, and culture time of 96 h. Using X-ray diffraction analysis, the calcium carbonate polymorphs produced by Microbacterium sp. GM-1 were proven to be mainly calcite.ConclusionsThe results of this research provide evidence that Microbacterium sp. GM-1 can biologically induce calcification and suggest that strain GM-1 may play a potential role in the synthesis of new biominerals and in bioremediation or biorecovery.  相似文献   

9.
BackgroundXylanase from bacteria finds use in prebleaching process and bioconversion of lignocelluloses into feedstocks. The xylanolytic enzyme brings about the hydrolysis of complex biomolecules into simple monomer units. This study aims to optimize the cellulase-free xylanase production and cell biomass of Bacillus tequilensis strain ARMATI using response surface methodology (RSM).ResultsStatistical screening of medium constituents and the physical factors affecting xylanase and biomass yield of the isolate were optimized by RSM using central composite design at N = 30, namely 30 experimental runs with 4 independent variables. The central composite design showed 3.7 fold and 1.5 fold increased xylanase production and biomass yield of the isolate respectively compared to ‘one factor at a time approach’, in the presence of the basal medium containing birchwood xylan (1.5% w/v) and yeast extract (1% w/v), incubated at 40°C for 24 h. Analysis of variance (ANOVA) revealed high coefficient of determination (R2) of 0.9978 and 0.9906 for the respective responses at significant level (p < 0.05). The crude xylanase obtained from the isolate showed stability at high temperature (60°C) and alkaline condition (pH 9) up to 4 h of incubation.ConclusionsThe cellulase-free xylanase showed an alkali-tolerant and thermo-stable property with potentially applicable nature at industrial scale. This statistical approach established a major contribution in enzyme production from the isolate by optimizing independent factors and represents a first reference on the enhanced production of thermo-alkali stable cellulase-free xylanase from B. tequilensis.  相似文献   

10.
BackgroundLysozyme plays a crucial role in innate immunity with its well-recognized bacteriolytic activity. In this study, the influence of expression parameters (inoculation volume, culture volume, growth time, induction temperature and time, initial pH and methanol concentration) on human lysozyme (HLZ) production in recombinant P. pastoris SMD1168 was investigated through Plackett–Burman (PB) design and response surface methodology (RSM).ResultsIt was revealed that induction temperature, induction time and culture volume had significant influence (P < 0.01) on HLZ expression level, which were elected for further optimization with three-dimensional response surface designs for enhanced HLZ production. The highest lysozyme activity reached 3301 U/mL under optimized conditions (at 23.5°C for 90 h with culture volume of 48 mL) in shake flask, which increased 2.2 fold compared with that achieved with the standard protocol (Invitrogen). When high-cell-density fermentation of the recombinant Pichia pastoris was performed in a 15 L fermenter under optimized conditions, the extracellular lysozyme activity reached 47,680 U/mL. SDS-PAGE analysis of the product demonstrated that HLZ was produced as a single major protein with a molecular weight of approximately 14.7 kDa, consistent with its expected size.ConclusionsThe results indicated that the optimized culture conditions using PB design and RSM significantly enhanced the expression level of HLZ, and the Pichia expression system for HLZ production was successful and industrially promising.  相似文献   

11.
BackgroundRice is globally one of the most important food crops, and NaCl stress is a key factor reducing rice yield. Amelioration of NaCl stress was assessed by determining the growth of rice seedlings treated with culture supernatants containing 5-aminolevulinic acid (ALA) secreted by strains of Rhodopseudomonas palustris (TN114 and PP803) and compared to the effects of synthetic ALA (positive control) and no ALA content (negative control).ResultsThe relative root growth of rice seedlings was determined under NaCl stress (50 mM NaCl), after 21 d of pretreatment. Pretreatments with 1 μM commercial ALA and 10X diluted culture supernatant of strain TN114 (2.57 μM ALA) gave significantly better growth than 10X diluted PP803 supernatant (2.11 μM ALA). Rice growth measured by dry weight under NaCl stress ordered the pretreatments as: commercial ALA > TN114 > PP803 > negative control. NaCl stress strongly decreased total chlorophyll of the plants that correlated with non-photochemical quenching of fluorescence (NPQ). The salt stress also strongly increased hydrogen peroxide (H2O2) concentration in NaCl-stressed plants. The pretreatments were ordered by reduction in H2O2 content under NaCl stress as: commercial ALA > TN114 > PP803 > negative control. The ALA pretreatments incurred remarkable increases of total chlorophyll and antioxidative activities of catalase (CAT), ascorbate peroxide (APx), glutathione reductase (GR) and superoxide dismutase (SOD); under NaCl stress commercial ALA and TN114 had generally stronger effects than PP803.ConclusionsThe strain TN114 has potential as a plant growth stimulating bacterium that might enhance rice growth in saline paddy fields at a lower cost than commercial ALA.  相似文献   

12.
BackgroundThe development of a potential single culture that can co-produce hydrogen and ethanol is beneficial for industrial application. Strain improvement via molecular approach was proposed on hydrogen and ethanol co-producing bacterium, Escherichia coli SS1. Thus, the effect of additional copy of native hydrogenase gene hybC on hydrogen and ethanol co-production by E. coli SS1 was investigated.ResultsBoth E. coli SS1 and the recombinant hybC were subjected to fermentation using 10 g/L of glycerol at initial pH 7.5. Recombinant hybC had about 2-fold higher cell growth, 5.2-fold higher glycerol consumption rate and 3-fold higher ethanol productivity in comparison to wild-type SS1. Nevertheless, wild-type SS1 reported hydrogen yield of 0.57 mol/mol glycerol and ethanol yield of 0.88 mol/mol glycerol, which were 4- and 1.4-fold higher in comparison to recombinant hybC. Glucose fermentation was also conducted for comparison study. The performance of wild-type SS1 and recombinant hybC showed relatively similar results during glucose fermentation. Additional copy of hybC gene could manipulate the glycerol metabolic pathway of E. coli SS1 under slightly alkaline condition.ConclusionsHybC could improve glycerol consumption rate and ethanol productivity of E. coli despite lower hydrogen and ethanol yields. Higher glycerol consumption rate of recombinant hybC could be an advantage for bioconversion of glycerol into biofuels. This study could serve as a useful guidance for dissecting the role of hydrogenase in glycerol metabolism and future development of effective strain for biofuels production.  相似文献   

13.
BackgroundDepletion of petroleum resources has enforced the search for alternative sources of renewable energy. Introduction of biofuels into the market was expected to become a solution to this disadvantageous situation. Attempts to cover fuel demand have, however, caused another severe problem—the waste glycerol generated during biodiesel production at a concentration of approximately 10% w/w. This, in turn, prompted a global search for effective methods of valorization of the waste fraction of glycerol.ResultsUtilization of the waste fraction at 48 h with an initial glycerol concentration of 30 g·L-1 and proceeding with 62% efficiency enabled the production of 9 g·L-1 dihydroxyacetone at 50% substrate consumption. The re-use of the immobilized biocatalyst resulted in a similar concentration of dihydroxyacetone (8.7 g·L-1) in two-fold shorter time, with an efficiency of 85% and lower substrate consumption (35%).ConclusionsThe method proposed in this work is based on the conversion of waste glycerol to dihydroxyacetone in a reaction catalyzed by immobilized Gluconobacter oxydans cell extract with glycerol dehydrogenase activity, and it could be an effective way to convert waste glycerol into a valuable product.  相似文献   

14.
BackgroundOptimization of nutrient feeding was developed to improve the growth of Bacillus subtilis in fed batch fermentation to increase the production of jiean-peptide (JAA). A central composite design (CCD) was used to obtain a model describing the relationship between glucose, total nitrogen, and the maximum cell dry weight in the culture broth with fed batch fermentation in a 5 L fermentor.ResultsThe results were analyzed using response surface methodology (RSM), and the optimized values of glucose and total nitrogen concentration were 30.70 g/L and 1.68 g/L in the culture, respectively. The highest cell dry weight was improved to 77.50 g/L in fed batch fermentation, which is 280% higher than the batch fermentation concentration (20.37 g/L). This led to a 44% increase of JAA production in fed batch fermentation as compared to the production of batch fermentation.ConclusionThe results of this work improve the present production of JAA and may be adopted for other objective products' production.  相似文献   

15.
BackgroundGinsenoside is the most important secondary metabolite in ginseng. Natural sources of wild ginseng have been overexploited. Although root culture can reduce the length of the growth cycle of ginseng, the number of species of ginsenosides is reduced and their contents are lower in the adventitious roots of ginseng than in the roots of ginseng cultivated in the field.ResultsIn this study, 147 strains of β-glucosidase-producing microorganisms were isolated from soil. Of these, strain K35 showed excellent activity for converting major ginsenosides into rare ginsenosides, and a NCBI BLAST of its 16S rDNA gene sequence showed that it was most closely related to Penicillium sp. (HQ608083.1). Strain K35 was used to ferment the adventitious root extract, and the fermentation products were analyzed by high-performance liquid chromatography. The results showed that the content of the rare ginsenoside CK was 0.253 mg mL-1 under the optimal converting conditions of 9 d of fermentation at pH 7.0 in LL medium, which was significantly higher than that in the adventitious roots of ginseng.ConclusionThese findings may not only solve the problem of low productivity of metabolite in ginseng root culture but may also result in the development of a new valuable method of manufacturing ginsenoside CK.  相似文献   

16.
BackgroundThe production of biofuels from renewable energy sources is one of the most important issues in industrial biotechnology today. The process is known to generate various by-products, for example crude glycerol, which is obtained in the making of biodiesel from rapeseed oil. Crude glycerol may be utilized in many ways, including microbial conversion to 1,3-propanediol (1,3-PD), a raw material for the synthesis of polyesters and polyurethanes.ResultsThe paper presents results of a study on the synthesis of 1,3-propanediol from crude glycerol by a repeated batch method with the use of Clostridium butyricum DSP1. Three cycles of fermentation medium replacement were carried out. The final concentration of 1,3-PD was 62 g/L and the maximum productivity, obtained during the second cycle, reached 1.68 g/L/h. Additionally, experiments conducted in parallel to the above involved using the entire quantity of the culture broth removed from the bioreactor to inoculate successive portions of fermentation media containing crude glycerol at concentrations of 80 g/L and 100 g/L. Under those conditions, the maximum 1,3-PD concentrations were 43.2 g/L and 54.2 g/L.ConclusionsThe experiments proved that by using a portion of metabolically active biomass as inoculum for another fermentation formula it is possible to eliminate the stage of inoculum growth and thereby reduce the length of the whole operation. Additionally, that strategy avoids the phase of microbial adaptation to a different source of carbon such as crude glycerol, which is more difficult to utilize, thus improving the kinetic parameters of 1,3-PD production.  相似文献   

17.
BackgroundAn effective single culture with high glycerol consumption and hydrogen and ethanol coproduction yield is still in demand. A locally isolated glycerol-consuming Escherichia coli SS1 was found to produce lower hydrogen levels under optimized ethanol production conditions. Molecular approach was proposed to improve the hydrogen yield of E. coli SS1 while maintaining the ethanol yield, particularly in acidic conditions. Therefore, the effect of an additional copy of the native hydrogenase gene hycE and recombinant clostridial hydrogenase gene hydA on hydrogen production by E. coli SS1 at low pH was investigated.ResultsRecombinant E. coli with an additional copy of hycE or clostridial hydA was used for fermentation using 10 g/L (108.7 mmol/L) of glycerol with an initial pH of 5.8. The recombinant E. coli with hycE and recombinant E. coli with hydA showed 41% and 20% higher hydrogen yield than wild-type SS1 (0.46 ± 0.01 mol/mol glycerol), respectively. The ethanol yield of recombinant E. coli with hycE (0.50 ± 0.02 mol/mol glycerol) was approximately 30% lower than that of wild-type SS1, whereas the ethanol yield of recombinant E. coli with hydA (0.68 ± 0.09 mol/mol glycerol) was comparable to that of wild-type SS1.ConclusionsInsertion of either hycE or hydA can improve the hydrogen yield with an initial pH of 5.8. The recombinant E. coli with hydA could retain ethanol yield despite high hydrogen production, suggesting that clostridial hydA has an advantage over the hycE gene in hydrogen and ethanol coproduction under acidic conditions. This study could serve as a useful guidance for the future development of an effective strain coproducing hydrogen and ethanol.  相似文献   

18.
BackgroundPoly(dl-lactic acid), or PDLLA, is a biodegradable polymer that can be hydrolyzed by various types of enzymes. The protease produced by Actinomadura keratinilytica strain T16-1 was previously reported to have PDLLA depolymerase activity. However, few studies have reported on PDLLA-degrading enzyme production by bacteria. Therefore, the aims of this study were to determine a suitable immobilization material for PDLLA-degrading enzyme production and optimize PDLLA-degrading enzyme production by using immobilized A. keratinilytica strain T16-1 under various fermentation process conditions in a stirrer fermenter.ResultsAmong the tested immobilization materials, a scrub pad was the best immobilizer, giving an enzyme activity of 30.03 U/mL in a shake-flask scale. The maximum enzyme activity was obtained at aeration 0.25 vvm, agitation 170 rpm, 45°C, and 48 h of cultivation time. Under these conditions, a PDLLA-degrading enzyme production of 766.33 U/mL with 15.97 U/mL·h productivity was observed using batch fermentation in a 5-L stirrer fermenter. Increased enzyme activity and productivity were observed in repeated-batch (942.67 U/mL and 19.64 U/mL·h) and continuous fermentation (796.43 U/mL and 16.58 U/mL·h) at a dilution rate of 0.013/h. Scaled-up production of the enzyme in a 10-L stirrer bioreactor using the optimized conditions showed a maximum enzyme activity of 578.67 U/mL and a productivity of 12.06 U/mL·h.ConclusionsThis research successfully scaled-up the enzyme production to 5 and 10 L in a stirrer fermenter and is helpful for many applications of poly(lactic acid).  相似文献   

19.
BackgroundTreating latex rubber sheet wastewater often leads to the generation of a rotten-egg odor from toxic H2S. To increase the treatment efficiency and eliminate H2S, purple nonsulfur bacteria (PNSB), prepared by supplementing non-sterile rubber sheet wastewater (RAW) with fermented pineapple extract (FPE), were used to treat this wastewater under microaerobic light conditions. The following 3 independent variables: chemical oxygen demand (COD), initial pH and FPE dose were investigated using the Box–Behnken design to find optimal conditions for stimulating the growth of indigenous PNSB (PNSBsi).ResultsThe addition of 2.0% FPE into RAW, which had a COD of 2000 mg L- 1 and an initial pH of 7.0, significantly decreased oxidation reduction potential (ORP) value and stimulated PNSBsi to reach a maximum of 7.8 log cfu mL- 1 within 2 d. Consequently, these PNSBsi, used as inoculants, were investigated for their ability to treat the wastewater under microaerobic light conditions. A central composite design was used to determine the optimal conditions for the wastewater treatment. These proved to be 7% PNSBsi, 0.8% FPE and 4 d retention time and this combination resulted in a reduction of 91% for COD, 75% for suspended solids, 61% for total sulfide while H2S was not detected. Results of abiotic control and treatment sets indicated that H2S was produced by heterotrophic bacteria and it was then effectively deactivated by PNSBsi.ConclusionsThe stimulation of PNSB growth by FPE under light condition was to lower ORP, and PNSBsi proved to be effective for treating the wastewater.  相似文献   

20.
BackgroundLipases are used in detergent industries to minimise the use of phosphate-based chemicals in detergent formulations. The use of lipase in household laundry reduces environmental pollution and enhances the ability of detergent to remove tough oil or grease stains.ResultsA lipase-producing indigenous Bacillus subtilis strain [accession no. KT985358] was isolated from the foothills of Trikuta mountain in Jammu and Kashmir, India. The lipase (BSK-L) produced by this strain expressed alkali and thermotolerance. Lipase has an optimal activity at pH 8.0 and temperature 37°C, whereas it is stable at pH 6.0–9.0 and showed active lipolytic activity at temperatures 30 to 60°C. Furthermore, lipase activity was found to be stimulated in the presence of the metal ions Mn2 +, K+, Zn2 +, Fe2 + and Ca2 +. This lipase was resistant to surfactants, oxidising agents and commercial detergents, suggesting it as a potential candidate for detergent formulation. BSK-L displayed noticeable capability to remove oil stains when used in different washing solutions containing buffer, lipase and commercial detergent. The maximum olive oil removal percentage obtained was 68% when the optimum detergent concentration (Fena) was 0.3%. The oil removal percentage from olive oil-soiled cotton fabric increased with 40 U/mL of lipase.ConclusionsThis BSK-L enzyme has the potential for removing oil stains by developing a pre-soaked solution for detergent formulation and was compatible with surfactants, oxidising agents and commercial detergents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号