首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The specific membrane capacitance (SMC) is an electrical parameter that correlates with both the electrical activity and morphology of the plasma membrane, which are physiological markers for cellular phenotype and health. We have developed a microfluidic device that enables impedance spectroscopy measurements of the SMC of single biological cells. Impedance spectra induced by single cells aspirated into the device are captured over a moderate frequency range (5 kHz–1 MHz). Maximum impedance sensitivity is achieved using a tapered microfluidic channel, which effectively routes electric fields across the cell membranes. The SMC is extracted by curve-fitting impedance spectra to an equivalent circuit model. From our measurement, acute myeloid leukemia (AML) cells are found to exhibit larger SMC values in hypertonic solutions as compared with those in isotonic solutions. In addition, AML cell phenotypes (AML2 and NB4) exhibiting varying metastatic potential yield distinct SMC values (AML2: 16.9 ± 1.9 mF/m2 (n = 23); NB4: 22.5 ± 4.7 mF/m2 (n = 23)). Three-dimensional finite element simulations of the microfluidic device confirm the feasibility of this approach.  相似文献   

2.
A variety of methods have been used to introduce chemicals into a stream or to mix two or more streams of different compositions using microfluidic devices. In the following paper, the introduction of cryoprotective agents (CPAs) used during cryopreservation of cells in order to protect them from freezing injuries and increase viability post thaw is described. Dimethylsulphoxide (DMSO) is the most commonly used CPA. We aim to optimize the operating conditions of a two-stream microfluidic device to introduce a 10% vol/vol solution of DMSO into a cell suspension. Transport behavior of DMSO between two streams in the device has been experimentally characterized for a spectrum of flow conditions (0.7 < Re < 10), varying initial donor stream concentrations, (1% vol/vol < Co < 15% vol/vol) and different flow rate fractions (0.23 < fq < 0.77). The outlet cell stream concentration is analyzed for two different flow configurations: one with the cell stream flowing on top of the DMSO-rich donor stream, and the other with the cell stream flowing beneath the heavy DMSO-laden stream. We establish a transition from a diffusive mode of mass transfer to gravity-influenced convective currents for Atwood numbers (At) in the range of (1.7 × 10−3 < At < 3.1 × 10−3) for the latter configuration. Flow visualization with cells further our understanding of the effect of At on the nature of mass transport. Cell motion studies performed with Jurkat cells confirm a high cell recovery from the device while underscoring the need to collect both the streams at the outlet of the device and suggesting flow conditions that will help us achieve the target DMSO outlet concentration for clinical scale flow rates of the cell suspension.  相似文献   

3.
For the first time, we report on the preliminary evaluation of gold coated optical fibers (GCOFs) as three-dimensional (3D) electrodes for a membraneless glucose/O2 enzymatic biofuel cell. Two off-the-shelf 125 μm diameter GCOFs were integrated into a 3D microfluidic chip fabricated via rapid prototyping. Using soluble enzymes and a 10 mM glucose solution flowing at an average velocity of 16 mm s−1 along 3 mm long GCOFs, the maximum power density reached 30.0 ± 0.1 μW cm−2 at a current density of 160.6 ± 0.3 μA cm−2. Bundles composed of multiple GCOFs could further enhance these first results while serving as substrates for enzyme immobilization.  相似文献   

4.
AC Faradaic reactions have been reported as a mechanism inducing non-ideal phenomena such as flow reversal and cell deformation in electrokinetic microfluidic systems. Prior published work described experiments in parallel electrode arrays below the electrode charging frequency (fc), the frequency for electrical double layer charging at the electrode. However, 2D spatially non-uniform AC electric fields are required for applications such as in plane AC electroosmosis, AC electrothermal pumps, and dielectrophoresis. Many microscale experimental applications utilize AC frequencies around or above fc. In this work, a pH sensitive fluorescein sodium salt dye was used to detect [H+] as an indicator of Faradaic reactions in aqueous solutions within non-uniform AC electric fields. Comparison experiments with (a) parallel (2D uniform fields) electrodes and (b) organic media were employed to deduce the electrode charging mechanism at 5 kHz (1.5fc). Time dependency analysis illustrated that Faradaic reactions exist above the theoretically predicted electrode charging frequency. Spatial analysis showed [H+] varied spatially due to electric field non-uniformities and local pH changed at length scales greater than 50 μm away from the electrode surface. Thus, non-uniform AC fields yielded spatially varied pH gradients as a direct consequence of ion path length differences while uniform fields did not yield pH gradients; the latter is consistent with prior published data. Frequency dependence was examined from 5 kHz to 12 kHz at 5.5 Vpp potential, and voltage dependency was explored from 3.5 to 7.5 Vpp at 5 kHz. Results suggest that Faradaic reactions can still proceed within electrochemical systems in the absence of well-established electrical double layers. This work also illustrates that in microfluidic systems, spatial medium variations must be considered as a function of experiment time, initial medium conditions, electric signal potential, frequency, and spatial position.  相似文献   

5.
Advancements in the field of electronics during the past few decades have inspired the use of transistors in a diversity of research fields, including biology and medicine. However, signals in living organisms are not only carried by electrons but also through fluxes of ions and biomolecules. Thus, in order to implement the transistor functionality to control biological signals, devices that can modulate currents of ions and biomolecules, i.e., ionic transistors and diodes, are needed. One successful approach for modulation of ionic currents is to use oppositely charged ion-selective membranes to form so called ion bipolar junction transistors (IBJTs). Unfortunately, overall IBJT device performance has been hindered due to the typical low mobility of ions, large geometries of the ion bipolar junction materials, and the possibility of electric field enhanced (EFE) water dissociation in the junction. Here, we introduce a novel polyphosphonium-based anion-selective material into npn-type IBJTs. The new material does not show EFE water dissociation and therefore allows for a reduction of junction length down to 2 μm, which significantly improves the switching performance of the ion transistor to 2 s. The presented improvement in speed as well the simplified design will be useful for future development of advanced iontronic circuits employing IBJTs, for example, addressable drug-delivery devices.There has been a recent interest in developing diodes1–4 and transistors4–8 that conduct and modulate ion currents. Such non-linear iontronic components are, for example, interesting as they allow further control of ions in, for instance, electrophoretic drug delivery devices. A range of microfabricated diodes,9–11 transistors,12,13 and circuits9,14 has been constructed using ion-selective membranes. These membranes contain fixed charges of either polarity, compensated by mobile ions of opposite charge (counter-ions). When immersed in an electrolyte, counter-ions can move through the membrane, while ions with the same charge as the fixed charges (co-ions) are repelled. This renders the membrane selective for the counter-ion and can therefore be considered as p- or n-type ion conductors. By combining two membranes of opposite polarity, a bipolar membrane (BM) configuration is obtained15 (Figure 1(a)). The BM junction can be biased by an ion current in the reverse and forward directions, respectively.16,17 This modulates the ion concentration inside the BM, and thus the ionic conductivity, which then results in an current rectification.2,18 In the three-terminal ion bipolar junction transistor12 (IBJT), an ion-selective base (B) is connected to oppositely selective emitter (E) and collector (C), forming two BM configurations (EB and BC) (Figure 1(b)). pnp- and npn-IBJTs have been constructed14 from photolithography patterned poly(styrene sulfonate) (PSS, p-selective) and quaternized poly(vinylbenzyl chloride) (n-selective) as emitter, collector, and base. In these devices, a neutral poly(ethylene glycol) (PEG) electrolyte is typically inserted into the junction to separate the base from the emitter and collector,12 in order to avoid19 electric field enhanced (EFE) water dissociation16 (Figure 1(a)). EFE water dissociation is typically observed in BMs20 and produces water ions inside the BM under reverse bias, which prevents proper IBJT operation. In PEG-IBJTs, the current between the emitter and collector (IC) is thus modulated by controlling the ion concentration inside the PEG-junction.21 Ions are injected or extracted into the junction depending on the bias of the base (VEB). In a npn-IBJT, a positive bias is typically applied between emitter and collector (VEC), thus allowing anions to migrate from the emitter to the collector. In the cut-off mode (Figure 1(c)), a negative bias VEB is applied, resulting in reverse bias of both EB and BC. Cations in the junction will migrate into the base, while anions will primarily migrate into the collector, due to the higher collector bias. This base current (IB) will extract ions from the junction, which decreases the ionic conductivity in the junction resulting in a low IC. Eventually, the resistive characteristics for ion charge transport, between the emitter and collector, will be entirely dominated by the junction. This gives that most of the applied VEC is consumed across the junction with only a minimal voltage potential drop across the emitter and base terminals.Open in a separate windowFIG. 1.(a) The modes of operation for a BM; forward bias (high conduction and ion accumulation), reverse bias (low conduction and ion depletion), and EFE water dissociation (high conduction, formation of ions). (b) Illustrations of an npn-IBJT, with anion-selective emitter (E) and collector (C) forming a junction with a cation-selective base (B). (c) In cut-off mode, the base and collector extract ions from the junction, prohibiting co-ion migration through the base. (d) In active mode, the forward biased EB injects ions into the base, thus allowing anions from the emitter to migrate as co-ions through the base into the collector.In the active-mode of the npn-IBJT (Figure 1(d)), the VEB bias at the base is reversed (i.e., now positive). This causes injection of cations, from the base, and anions, from the emitter, into the junction. As the ion concentration increases, anions from the emitter can start to drift across the junction to the collector, thus a high IC is obtained. The high concentration of ions inside the junction is reflected in a low resistive value for ion transport. This now causes the voltage to drop over the emitter and collector terminals, thus lowering the EB forward bias and the injection of ions from the base. At the collector-junction interface, the extraction of anions produces an ion depletion zone and a corresponding voltage drop. Thus, in the active-mode, the applied VEC is primarily consumed across the emitter and collector terminals and also at the collector-junction interface.The switching speed of an IBJT should be strongly correlated to the distance separating the emitter and collector,14 as this length determines the volume that needs to be filled or emptied with ions causing modulation of ions in the junction. To achieve a fast-switching IBJT, the junction volume, i.e., the collector-emitter separation, should be as small as possible. However, EFE water dissociation must be avoided since this process ruin the IBJT operation. EFE water dissociation is, in part, driven by the appearance of a large potential drop across a small distance, as occurring at the interface of a BM under reverse bias, producing a high electric field that accelerates the forward reaction rate of water auto-dissociation.16 Miniaturization of the collector-emitter distance is therefore problematic, as the separation inside the EB and BC BMs evidently also mush shrink, resulting in higher reverse bias electric fields across the BMs and thus promoting EFE water dissociation. The problem of EFE water dissociation in an IBJT primarily manifests itself in the cut-off mode, as water ions are generated in the reversed biased EB and BC BMs. These ions produce an elevated cut-off IC, and hence deteriorate the IBJTs on–off performance. Here, we report an IBJT, in which the EFE water dissociation is avoided by the use of a novel polyphosphonium-based anion-selective material, which previously has been shown to prevent EFE water dissociation in BM diodes.11 This allows the collector and emitter to directly contact the base without an intermediate PEG-layer. Without the need for a PEG-separator inside the BMs, the collector-emitter distance is reduced to only 2 μm.Polyphosphonium-based npn-IBJTs were produced following the same manufacturing protocol as was reported for polyphosphonium-based ion diodes.11 Conjugated polymer electrodes and cation-selective base was patterned from ∼200 nm thick poly(3,4-ethylenedioxythiophene):polystyrene sulfonate film on polyethylene terephthalate-sheets using photolithography and dry-etching. The base was rendered electronically insulating by chemical overoxidation via exposure to sodium hypochlorite through a mask. A 2 μm thick SU8-layer was patterned on-top of this configuration, with an opening defining the actual junction. 1 μm thick polyphosphonium-based anion-selective emitter and collector were deposited and patterned using photolithography and dry-etching, to overlap with the base at the opening of the SU8. Finally, a second 10 μm thick layer of SU8 was used to seal the junction. The membranes were hydrated by incubation in dH2O for 24 h before any measurements were carried out. Aqueous 0.1M NaCl electrolytes were used during the measurement. All electrical measurements were performed using a Keithley 2602 source meter.The switching characteristics of the npn-IBJT were obtained by applying VEC of 10 V and alternating VEB at ±3 V for various duration of time, see Figure Figure2.2. A periodic 5 s switching with 8 Hz measurement rate was used to record the dynamics of the turn-on/off characteristics of the device. When VEB switches from −3 to +3 V, there is a quick increase in the IB, as ions from the base and emitter migrate into the emitter/base junction. After a delay of ∼0.25 s, IC starts to increase due to the increased ion concentration in the emitter/base junction and the subsequent diffusion of anions into the base. As the IC increases, the IB decreases as the voltage drop between the emitter and base decreases, and after ∼2 s IC reaches 90% of the steady state on-current level. For longer on-switching times, the IB and IC stay stable over 30 s, after which a small increase is observed. This current-drift in both IB and IC is likely due to the contribution of co-ion migration. As cations from the base migrate into the emitter as co-ions, the conductivity in the emitter increases, leading to an increased IC value. This increases the ion concentration at the base, which gives less selective ion injection and thus more cation injection from the base, i.e., a higher IB.Open in a separate windowFIG. 2.Emitter-collector current response as the IBJT is switched between cut-off (VEB=−3 V) and active mode (VEB = 3 V) for VEC = 10 V, at 5 s and 120 s periods.As VEB is switched back to −3 V, there is a sharp negative peak in IE as ions are extracted from the junction, which occur mainly through the base (cations) and collector (anions) terminals. As the ion concentration in the base drops, IC decreases. The transistor turns off to 10% of the value of the steady state on-current within ∼2 s, regardless of the duration of the on-state. The constant turn-off time indicates that ions are not accumulating to a significant extent inside the junction during the on-steady state but are instead constantly transported out of the junction. When all co-ions have been extracted from the junction, the Donnan exclusion prevents subsequent injection of anions into the base, and IC is therefore low. The on/off ratio of IC reaches above 100.A transfer curve was obtained by scanning VEB between −3 and +3 V while keeping VEC at 10 V (Figure 3(a)). As expected, both IC and IB remain low for negative VEB. In this range, both EB and BC are biased in reverse direction. As VEB turns positive, the EB configuration is switched into forward bias and ions are injected into the junction. This leads to a linear increase in IC vs. VEB. For the reverse scan, a minor hysteresis is observed for both the IC and IB scans, again probably due to the contribution of co-ion migration due to long time operation of the device.Open in a separate windowFIG. 3.Transfer and output curves. (a) The transfer curve is low for negative VEB and increases linearly for positive VEB with approximately zero threshold. (b) The output curves show IC saturating with respect of VEC for positive VEB.The transistor output characteristics were obtained by scanning VEC at different VEB values (Figure 3(b)). The saturation regime, i.e., the bias mode was both EB and BC are in forward bias, was avoided as this has negative impact on the stability of the device. As reported for previous IBJT devices, the output characteristics show a clear saturation behaviour of IC across the entire range of VEC. Further, the IC increases linearly with VEB. The increase of both IC and IB when operating for extended periods of time in the active mode is again attributed to the addition and inclusion of co-ions in the junction. The current gain (IC/IB) at VEC = 10 V decreases with VEB and reaches 43.9, 17.9, and 10.7 for VEB = 1 V, 2 V, and 3 V, respectively. For higher base bias voltages, the ion concentration increases in the junction and thus the injection selectivity decreases.In comparison with previously reported IBJTs,12,14,21 the lack of a neutral electrolyte layer in the junction has an overall positive effect on the device characteristics. Main performance improvements are found in a decrease in the turn-on time from 9 s (for npn-IBJT21) to 2 s, for devices with comparable junction widths and heights. The main contribution to the improved switching speed is likely the decreased length between the emitter and collector. Interestingly, simulations have shown that an extended space charge region (ESCR), for a PEG-IBJT in cut-off mode, can extend several micrometers away from the collector.22 Thus, a PEG-IBJT with an emitter-collector separation of single micrometers should show an increased cut-off current due to the ESCR overlapping in the junction. However, by omitting the PEG in the junction, the ESCR is reduced due to screening from the fixed charges in the BM layers. This enables the IBJT, reported here, to operate with retained low cut-off currents. On-off ratios and ion current gains are approximately equal to previous IBJTs,12,14,21 at above 100 and 10, respectively. The on–off ratio and ion current gain are more dependent on the selectivity of the membranes and the charge of the junction.Further, the need to separate the layers in a PEG-IBJT puts high demands on the patterning resolution and alignment accuracy to reduce the separation between emitter/collector and base. As polyphosphonium allows the IBJT to be built without separation of layers, miniaturization of the junction is relatively easier to obtain. The switching speed can potentially be further improved by retaining the base material between the emitter and collector (see Figure 1(b)), thus allowing for a more direct pathway for IC. This design would, however, require a much more accurate layer alignment or that the base patterned on top of the emitter and collector layers. In general, such modifications of device geometry are simpler to accomplish with the non-EFE water dissociating polyphosphonium as fewer active layers are used, suggesting a further use of polyphosphonium to improve switching speed and miniaturization of IBJTs. Such further advancement in IBJT performance would be welcomed, for example, in the continued work towards complex ionic circuits14 to regulate signalling in bioelectronics and in drug delivery applications, in which generation of dynamic and complex gradients, at high spatial resolution, is of generic interest.  相似文献   

6.
The selective cell separation is a critical step in fundamental life sciences, translational medicine, biotechnology, and energy harvesting. Conventional cell separation methods are fluorescent activated cell sorting and magnetic-activated cell sorting based on fluorescent probes and magnetic particles on cell surfaces. Label-free cell separation methods such as Raman-activated cell sorting, electro-physiologically activated cell sorting, dielectric-activated cell sorting, or inertial microfluidic cell sorting are, however, limited when separating cells of the same kind or cells with similar sizes and dielectric properties, as well as similar electrophysiological phenotypes. Here we report a label-free density difference amplification-based cell sorting (dDACS) without using any external optical, magnetic, electrical forces, or fluidic activations. The conceptual microfluidic design consists of an inlet, hydraulic jump cavity, and multiple outlets. Incoming particles experience gravity, buoyancy, and drag forces in the separation chamber. The height and distance that each particle can reach in the chamber are different and depend on its density, thus allowing for the separation of particles into multiple outlets. The separation behavior of the particles, based on the ratio of the channel heights of the inlet and chamber and Reynolds number has been systematically studied. Numerical simulation reveals that the difference between the heights of only lighter particles with densities close to that of water increases with increasing the ratio of the channel heights, while decreasing Reynolds number can amplify the difference in the heights between the particles considered irrespective of their densities.Separating specific cells from heterogeneous or homogeneous mixtures has been considered as a key step in a wide variety of applications ranging from biomedicine to energy harvesting. For example, the separation and sorting of rare circulating tumor cells (CTCs) from whole blood has gained significant importance in the potential diagnosis and treatment of metastatic cancers.1,2 Similarly, malaria detection relies on the collection of infected red blood cells (RBCs) from whole blood.3,4 In addition, the selective separation of lipid-rich microalgae from homogeneous mixtures of microalgae is a promising technique in biomass conversion.5To date, conventional cell separation can be done by labelling cells with biomolecules to induce differences in physical properties. For instance, in a fluorescence-activated cell sorter (FACS), cells to be separated are labelled with antibodies or aptamers with fluorescent molecules, and then sorted by applying an electrical potential.6,7 Similarly, magnetic-activated cell sorter (MACS) uses magnetic.8,9 Alternatively, label-free cell separation methods have exploited inherent differences in the physical properties (e.g., size and dielectric properties) of different kinds of cells. For example, acoustophoresis forces particles larger than a desired size to move into the center of a fluidic channel by using ultrasonic standing waves.10–12 Inertial microfluidics takes advantage of curved fluidic channels in order to amplify the size differences between particles.13,14 Mass-dependent separation of particles based on gravity and hydrodynamic flow was also reported.15 Particles with different dielectric properties can also be sorted by dielectrophoresis which induces the movement of polarizable particles.16–18The disadvantage of these methods, however, is that they require external forces and labels that may cause unexpected damage to biological cells.19–21 More importantly, most methods are limited in separating cells of the same kind or cells with similar sizes and dielectric properties.Here we designed a novel, label-free density difference amplification-based cell sorting (dDACS) that allows the separation of particles with the same size and charge by exploiting subtle differences in density without the use of external forces. Figure 1(a) illustrates the proposed microfluidic model and its underlying mechanism. The conceptual microfluidic system consists of an inlet, a separation chamber (hydraulic jump cavity), and multiple outlets. Particles entering through the inlet experience gravity (FG), buoyancy (FB), and drag (FD) forces in the separation chamber. The net force acting on the particles can be described as FFGFBFD.(1)As particles enter the separation chamber (i.e., hydraulic jump cavity), FD acting on the particles changes its direction along the streamline. The particles experience additional forces in the y direction due to large tangential angle (Fig. 1(b)). For lighter particles, whose densities are close to that of the surrounding water, FD becomes comparable to FG (i.e., in the y direction), while the net force for heavier particles is less affected by this additional contribution of FD due to a large FG. As a result, the height (H) and distance (D) that each particle can travel are different depending on its density. The difference in the maximum height (ΔHmax) between two particles with different density (ρp1 and ρp2) can be further approximated as ΔHmax(vyp0)2(vyfvyp0),(ρp1ρp2),(2)where vyp0 and vyf represent the velocity of particle and fluid along the y direction at the entrance of hydraulic jump cavity, respectively.Open in a separate windowFIG. 1.Schematic illustration of label-free density difference amplification-based cell sorting (dDACS), which exploits differences in the densities (ρ1 > ρ2) of particles with similar diameters (d) and charge. (a) The conceptual microfluidic design consists of an inlet, a separation chamber (hydraulic jump cavity), and multiple outlets. Incoming particles experience gravity (FG), buoyancy (FB), and drag (FD) forces in the separation chamber, and depending on their densities, the height (H) and distance (D) that each particle is able to reach will be different, allowing the particles to be separated into multiple outlets. (b) Possible microfluidic channel configurations for density-based separation: Uniform channel height (left), gradual channel expansion (middle), and hydraulic jump cavity with sudden channel expansion (right). The height difference between particles with different densities can be amplified by the sudden channel expansion compared to the other two cases due to the relatively large tangential angle, θ of FD. (|θ1|≪ |θ2|) (see Fig. S1 in the supplementary material22).In comparison with the other two cases (Fig. 1(b) uniform channel height and gradual channel expansion), the height difference between the particles with different densities can be amplified by the sudden channel expansion in the hydraulic jump cavity due to relatively large tangential angle (see supplementary material22). Therefore, the particles can be separated through the multiple outlets, depending on their height and distance.In order to analyze the separation behavior of particles in the chamber according to differences in their densities, H and D are systematically investigated. The numerical simulations are performed using a commercial CFD software (CFX 14.0; ANSYS 14.0; ANSYS, Inc.). Particles with the same density may have different trajectories in the separation chamber depending on their inlet positions (Fig. 2(a)). Prior to this investigation, the maximum height (Hmax) and distance (Dmax) for each particle are compared by examining H and D of 100 identical particles at different inlet positions since the inlet position of particles could be controlled.20 Fig. 2(b) shows Hmax and Dmax of particles with respect to density at a fixed Reynolds number (Re = 0.1). Note that Reynolds number is defined as Re = ρfvfDh/μ, where ρf, vf, Dh, μ are density of fluid, velocity of the fluid, hydraulic diameter of a channel, and dynamic viscosity of the fluid, respectively. The hydraulic diameter in the Reynolds number is determined with the inlet channel. Particle densities in the range of 1.1 to 2.0 g/cm3 are chosen with the increase of 0.1 g/cm3. These values are quite reasonable in that the densities of many microorganisms such as microalgae are typically within this range and their densities can be varied by 0.2 g/m3 depending on their cellular context.23 The lighter particles travel with a higher Hmax, and longer Dmax. With the separation chamber, the height difference between particles with densities of 1.1 and 1.2 g/cm3 can be amplified by about 10 times as compared to that in a channel without the chamber, judging from the position where the 1.1 g/cm3 particle reaches its Hmax.Open in a separate windowFIG. 2.Microfluidic particle separation with respect to Reynolds number (Re). (a) Trajectories in the separation chamber of a hundred particles with the same density starting from inlet positions chosen arbitrarily in order to investigate the effect of the inlet positions on the maxima of the height (Hmax) and distance (Dmax) prior to further simulation. (b) Representative trajectories of particles having different densities from 1.1 to 2.0 g/cm3. (c) The maximum height (Hmax) of each particle with respect to Re. (d) Representative maximum distance (Dmax) of each particle at Re = 0.1. (Left) Streamline of fluid and representative trajectories of particles with densities of 1.1 and 2.0 g/cm3 in the separation chamber at Re = 0.1 (right).In Fig. 2(c), the values for Hmax of particles with respect to Reynolds number (Re) are presented. Since in our study, the maximum height (Hmax) and distance (Dmax) for each particle were compared by examining H and D of 100 identical particles that are randomly distributed in the channel (throughout all figures), there is little variation in Hmax and Dmax between each simulation. However, the standard deviation between each simulation is quite small and can be negligible. The Hmax values particles at Re = 0.5 with densities of 1.1 g/cm3 and 1.2 g/cm3 are 2.21 × 103 μm and 2.17 × 103 μm, respectively. The difference between Hmax of different particles, ΔHmax, increases with decreasing Re. For example, ΔHmax between particles with densities of 1.1 and 2.0 g/cm3 becomes 0.26 × 103 μm at Re = 1.0, but increases to 1.38 × 103 μm as Re decreases to 0.1. As Re increases (velocity of fluid increases), the relative velocity in the y direction between the fluid and the particle increases resulting in increasing of FD in the y direction since the velocity of particle in the y direction is very small at the entrance of the separation chamber. Thus, contribution of FD becomes comparable to the net force in the y direction. As a result, most of the particles even in the case of heavier ones travel quite similarly with the streamline, and ΔHmax subsequently decreases. On the other hand, as Re decreases, the contribution of FG becomes dominant due to the decrease of FD in the y direction. Consequently, the particles start to cross downwards streamlines as the density of the particles increases and Hmax gradually decreases. In addition, irrespective of their densities, ΔHmax of the particles increases with decreasing Re.Fig. 2(d) shows Dmax with respect to the density of the particles (left). Different densities of particles show different trajectories due to the relative contribution of FD to the net force in the y direction depending on the particle density (right). At Re = 0.1, Dmax of particles with densities of 1.1 cm3 and 1.2 g/cm3 are 2.91 × 104 μm and 1.43 × 104 μm, respectively. As the density of a particle increases, its Dmax dramatically decreases. The difference in Dmax between particles with densities of 1.1 and 1.2 g/cm3 is 1.48 × 104 μm, and 0.0037 × 104 μm for particles with densities of 1.9 and 2.0 g/cm3. The effect of FD is stronger compared to that of FG on lighter particles. Thus, lighter particles travel quite similarly with the streamline and finally have a large Dmax. On the other hand, heavier particles where effect of FG is stronger compared to that of FD cross downwards streamlines and finally have a small Dmax.Next, in order to investigate the separation behavior of particles with respect to the geometry of the microfluidic device, the effect of the ratio of the height of the separation chamber (hc) to the inlet (hi) on Hmax is investigated as shown in Fig. Fig.3.3. Interestingly, Hmax of particles with density of 1.1 g/cm3 increases from 1.93 × 103 μm to 6.48 × 103 μm while that of particles with density of 1.9 g/cm3 slightly changes from 0.70 × 103 μm to 0.73 × 103 μm as hc/hi increases from 5 to 20.Open in a separate windowFIG. 3.Microfluidic particle separation with respect to the ratio of the height of the inlet (hi) to the separation chamber (hc).This result can be attributed to two effects: (1) the change in the streamline and (2) the relative contribution of drag force to the net force depending on the density. With increasing hc/hi, dramatic increase in Hmax for lighter particles is because the streamline for the lighter ones experiences more vertical displacement in the separation chamber and the contribution of FD to the net force acting on the lighter one is more significant (see Fig. S2 in the supplementary material22).Based on this approach, we propose a microfluidic device for the selective separation of the lightest particle. Fig. 4(a) shows one unit (with three outlets) of the proposed microfluidic device that can be connected in series. The ratio of channel heights (hc/hi) is set to 20, and the particle densities are in the range of 1.1 ∼ 1.5 g/m3. Fig. 4(b) shows the representative separation behavior of the particles. A portion of the lightest particles (1.1 g/cm3) is selectively separated into the upper and middle outlets, while remaining light particles together with four other heavier particles with densities in the range of 1.2 to 1.5 g/cm3 leave through the lowest outlet. With a single operation of this unit, 40% of the lightest particles are recovered. In addition, the yield increases with increasing number of cycles (Fig. 4(c)).Open in a separate windowFIG. 4.(a) One unit of the proposed microfluidic device for the selective separation of the lightest particle based on the simulation results. Particles are separated into two outlets based on differences in both the height and distance travelled stemming from differences in density. (b) Representative separation behavior of particles observed in the device. (c) The yield of the lightest particle (1.1 g/cm3) with the proposed microfluidic device according to the number of cycles (i.e., this unit is assumed to be connected in series).In summary, we have demonstrated a label-free microfluidic system for the separation of particles according to subtle differences in their densities without external forces. Our microfluidic design consists simply of an inlet, a separation chamber, and multiple outlets. When entering the separation chamber, the particles experience an additional drag force in the y direction, amplifying the difference in both the height and the distance that the particles with different densities can travel within the chamber. At a fixed Reynolds number, with increasing particle density, Hmax decreases monotonously, and Dmax decreases dramatically. On the other hand, as Reynolds number increases, the difference between the heights of particles with different densities is attenuated. In addition, the simulation reveals that increasing the ratio of the channel heights increases the difference between the heights of particles only when their densities are close to that of the surrounding water. Based on this approach, a microfluidic device for the separation of the lightest particles has been proposed. We expect that our density-based separation design can be beneficial to the selective separation of specific microorganisms such as lipid-rich microalgae for energy harvesting application.  相似文献   

7.
The westward expansion of human millet consumption from north China has important implications for understanding early interactions between the East and West. However, few studies have focused on the Xinjiang Uyghur Autonomous Region, the vast geographical area directly linking the ancient cultures of the Eurasian Steppe and the Gansu Corridor of China. In this study, we present the largest isotopic investigation of Bronze Age China (n = 110) on material from the key site of Tianshanbeilu, in eastern Xinjiang. The large range of δ13C values (–17.6‰ to –7.2‰; –15.5 ± 1.2‰) provides direct evidence of unique dietary diversity and consumption of significant C4 resources (millets). The high δ15N results (10.3‰ to 16.7‰; 14.7 ± 0.8‰) likely reflect sheep/goat and wild game consumption and the arid climate of the Taklamakan Desert. Radiocarbon dates from four individuals indicate Tianshanbeilu was in use between 1940 and 1215 cal bc. The Tianshanbeilu results are then analysed with respect to 52 Bronze Age sites from across Eurasia, to investigate the spread and chronology of significant human millet consumption and human migration. This isotopic survey finds novel evidence that the second millennium bc was a dynamic period, with significant dietary interconnectivity occurring between north China, Central Asia and Siberia. Further, we argue that this ‘Isotopic Millet Road’ extended all the way to the Mediterranean and Central Europe, and conclude that these C4 dietary signatures of millet consumption reflect early links (migration and/or resource transfer) between the Bronze Age inhabitants of modern-day China and Europe.  相似文献   

8.
Sodium-based dual-ion batteries (Na-DIBs) show a promising potential for large-scale energy storage applications due to the merits of environmental friendliness and low cost. However, Na-DIBs are generally subject to poor rate capability and cycling stability for the lack of suitable anodes to accommodate large Na+ ions. Herein, we propose a molecular grafting strategy to in situ synthesize tin pyrophosphate nanodots implanted in N-doped carbon matrix (SnP2O7@N-C), which exhibits a high fraction of active SnP2O7 up to 95.6 wt% and a low content of N-doped carbon (4.4 wt%) as the conductive framework. As a result, this anode delivers a high specific capacity ∼400 mAh g−1 at 0.1 A g−1, excellent rate capability up to 5.0 A g−1 and excellent cycling stability with a capacity retention of 92% after 1200 cycles under a current density of 1.5 A g−1. Further, pairing this anode with an environmentally friendly KS6 graphite cathode yields a SnP2O7@N-C||KS6 Na-DIB, exhibiting an excellent rate capability up to 30 C, good fast-charge/slow-discharge performance and long-term cycling life with a capacity retention of ∼96% after 1000 cycles at 20 C. This study provides a feasible strategy to develop high-performance anodes with high-fraction active materials for Na-based energy storage applications.  相似文献   

9.
Altered vascular function and pathological angiogenesis are important factors common to the development of obesity and obesity-associated diseases. Most human studies relating obesity and angiogenesis have compared levels of angiogenic factors in obesity without looking at the serum angiogenic capacity which reflects the balance between the effects of angiogenic and angiostatic factors. Therefore, in this cross-sectional study, the serum angiogenic potential and levels of angiogenic factors in serum of obese (BMI > 25 kg/m2) and lean subjects (BMI < 23 kg/m2), with no history of obesity associated co-morbidities, were assessed. Serum angiogenic potential was significantly higher (p < 0.0001) in both male (n = 67) and female (n = 35) obese subjects and showed a positive correlation (r = 0.4, p < 0.0001) with BMI. Serum levels of the angiogenic factors, vascular endothelial growth factor (VEGF) and angiopoietin were significantly higher in obese subjects. Levels of angiostatic factors such as angiostatin, endostatin were not altered in obese male subjects but were elevated in female obese subjects. Angiogenic potential and levels of VEGF did not vary in obese subjects with high HOMA-IR compared to obese subjects with low HOMA-IR. These results suggest that the angiogenic potential of serum was elevated in obesity and that insulin resistance may not contribute to the increased angiogenic potential in obesity.  相似文献   

10.
The Newtonian gravitational constant G, which is one of the most important fundamental physical constants in nature, plays a significant role in the fields of theoretical physics, geophysics, astrophysics and astronomy. Although G was the first physical constant to be introduced in the history of science, it is considered to be one of the most difficult to measure accurately so far. Over the past two decades, eleven precision measurements of the gravitational constant have been performed, and the latest recommended value for G published by the Committee on Data for Science and Technology (CODATA) is (6.674 08 ± 0.000 31) × 10−11 m3 kg−1 s−2 with a relative uncertainty of 47 parts per million. This uncertainty is the smallest compared with previous CODATA recommended values of G; however, it remains a relatively large uncertainty among other fundamental physical constants. In this paper we briefly review the history of the G measurement, and introduce eleven values of G adopted in CODATA 2014 after 2000 and our latest two values published in 2018 using two independent methods.  相似文献   

11.
The capability of the AC dielectrophoresis (DEP) for on-chip capture and chaining of microalgae suspended in freshwaters was evaluated. The effects of freshwater composition as well as the electric field voltage, frequency, and duration, on the dielectrophoretic response of microalga Chlamydomonas reinhardtii were characterized systematically. Highest efficiency of cell alignment in one-dimensional arrays, determined by the percentage of cells in chain and the chain length, was obtained at AC-field of 20 V mm−1 and 1 kHz applied for 600 s. The DEP response and cell alignment of C. reinhardtii in water sampled from lake, pond, and river, as well as model media were affected by the chemical composition of the media. In the model media, the efficiency of DEP chaining was negatively correlated to the conductivity of the cell suspensions, being higher in suspensions with low conductivity. The cells suspended in freshwaters, however, showed anomalously high chaining at long exposure times. High concentrations of nitrate and dissolved organic matter decrease cell chaining efficiency, while phosphate and citrate concentrations increase it and favor formation of longer chains. Importantly, the application of AC-field had no effect on algal autofluorescence, cell membrane damage, or oxidative stress damages in C. reinhardtii.  相似文献   

12.
Accurate measurement of blood viscoelasticity including viscosity and elasticity is essential in estimating blood flows in arteries, arterials, and capillaries and in investigating sub-lethal damage of RBCs. Furthermore, the blood viscoelasticity could be clinically used as key indices in monitoring patients with cardiovascular diseases. In this study, we propose a new method to simultaneously measure the viscosity and elasticity of blood by simply controlling the steady and transient blood flows in a microfluidic analogue of Wheastone-bridge channel, without fully integrated sensors and labelling operations. The microfluidic device is designed to have two inlets and outlets, two side channels, and one bridge channel connecting the two side channels. Blood and PBS solution are simultaneously delivered into the microfluidic device as test fluid and reference fluid, respectively. Using a fluidic-circuit model for the microfluidic device, the analytical formula is derived by applying the linear viscoelasticity model for rheological representation of blood. First, in the steady blood flow, the relationship between the viscosity of blood and that of PBS solution (μBloodPBS) is obtained by monitoring the reverse flows in the bridge channel at a specific flow-rate rate (QPBSSS/QBloodL). Next, in the transient blood flow, a sudden increase in the blood flow-rate induces the transient behaviors of the blood flow in the bridge channel. Here, the elasticity (or characteristic time) of blood can be quantitatively measured by analyzing the dynamic movement of blood in the bridge channel. The regression formula (ABlood (t) = Aα + Aβ exp [−(t − t0)/λBlood]) is selected based on the pressure difference (ΔP = PA − PB) at each junction (A, B) of both side channels. The characteristic time of blood (λBlood) is measured by analyzing the area (ABlood) filled with blood in the bridge channel by selecting an appropriate detection window in the microscopic images captured by a high-speed camera (frame rate = 200 Hz, total measurement time = 7 s). The elasticity of blood (GBlood) is identified using the relationship between the characteristic time and the viscosity of blood. For practical demonstrations, the proposed method is successfully applied to evaluate the variations in viscosity and elasticity of various blood samples: (a) various hematocrits form 20% to 50%, (b) thermal-induced treatment (50 °C for 30 min), (c) flow-induced shear stress (53 ± 0.5 mL/h for 120 min), and (d) normal rat versus spontaneously hypertensive rat. Based on these experimental demonstrations, the proposed method can be effectively used to monitor variations in viscosity and elasticity of bloods, even with the absence of fully integrated sensors, tedious labeling and calibrations.  相似文献   

13.
Acoustic trapping of minute bead amounts against fluid flow allows for easy automation of multiple assay steps, using a convenient aspirate/dispense format. Here, a method based on acoustic trapping that allows sample preparation for immuno-matrix-assisted laser desorption/ionization mass spectrometry using only half a million 2.8 μm antibody covered beads is presented. The acoustic trapping is done in 200 × 2000 μm2 glass capillaries and provides highly efficient binding and washing conditions, as shown by complete removal of detergents and sample processing times of 5-10 min. The versatility of the method is demonstrated using an antibody against Angiotensin I (Ang I), a peptide hormone involved in hypotension. Using this model system, the acoustic trapping was efficient in enriching Angiotensin at 400 pM spiked in plasma samples.  相似文献   

14.
A biochip system imitates the oviduct of mammals with a microfluidic channel to achieve fertilization in vitro of imprinting-control-region (ICR) mice. We apply a method to manipulate and to position the oocyte and the sperm of ICR mice at the same time in our microfluidic channel with a positive dielectrophoretic (DEP) force. The positive dielectrophoretic response of the oocyte and sperm was exhibited under applied bias conditions AC 10 Vpp waveform, 1 MHz, 10 min. With this method, the concentration of sperm in the vicinity of the oocyte was increased and enhanced the probability of natural fertilization. We used commercial numerical software (CFDRC-ACE+) to simulate the square of the electric field and analyzed the location at which the oocyte and sperm are trapped. The microfluidic devices were designed and fabricated with poly(dimethylsiloxane). The results of our experiments indicate that a positive DEP served to drive the position of the oocyte and the sperm to natural fertilization (average rate of fertilization 51.58%) in our microchannel structures at insemination concentration 1.5 × 106 sperm ml−1. Embryos were cultured to two cells after 24 h and four cells after 48 h.  相似文献   

15.
16.
The flow of λ-DNA solutions in a gradual micro-contraction was investigated using direct measurement techniques. The effects on DNA transport in microscale flows are significant because the flow behavior is influenced by macromolecular conformations, both viscous and elastic forces dominate inertial forces at this length scale, and the fully extended length of the molecule approaches the characteristic channel length wc (L/wc ∼ 0.13). This study examines the flow of semi-dilute and entangled DNA solutions in a gradual planar micro-contraction for low Reynolds numbers (3.7 × 10−6 < Re < 3.1 × 10−1) and high Weissenberg numbers (0.4 < Wi < 446). The semi-dilute DNA solutions have modest elasticity number, El = Wi/Re = 55, and do not exhibit viscoelastic behavior. For the entangled DNA solutions, we access high elasticity numbers (7.9 × 103 < El < 6.0 × 105). Video microscopy and streak images of entangled DNA solution flow reveal highly elastic behavior evidenced by the presence of large, stable vortices symmetric about the centerline and upstream of the channel entrance. Micro-particle image velocimetry measurements are used to obtain high resolution, quantitative velocity measurements of the vortex growth in this micro-contraction flow. These direct measurements provide a deeper understanding of the underlying physics of macromolecular transport in microfluidic flow, which will enable the realization of enhanced designs of lab-on-a-chip systems.  相似文献   

17.
Nowadays, microfluidics is attracting more and more attentions in the biological society and has provided powerful solutions for various applications. This paper reported a microfluidic strategy for aqueous sample sterilization. A well-designed small microchannel with a high hydrodynamic resistance was used to function as an in-chip pressure regulator. The pressure in the upstream microchannel was thereby elevated which made it possible to maintain a boiling-free high temperature environment for aqueous sample sterilization. A 120 °C temperature along with a pressure of 400 kPa was successfully achieved inside the chip to sterilize aqueous samples with E. coli and Staphylococcus aureus inside. This technique will find wide applications in portable cell culturing, microsurgery in wild fields, and other related micro total analysis systems.Microfluidics, which confines fluid flow at microscale, attracts more and more attentions in the biological society.1–4 By scaling the flow domain down to microliter level, microfluidics shows attractive merits of low sample consumption, precise biological objective manipulation, and fast momentum/energy transportation. For example, various cell operations, such as culturing5–7 and sorting,8–10 have already been demonstrated with microfluidic approaches. In most biological applications, sterilization is a key sample pre-treatment step to avoid contamination. However, as far as the author knew, this important pre-treatment operation is generally achieved in an off-chip way, by using high temperature and high pressure autoclave. Actually, microfluidics has already been utilized to develop new solution for high pressure/temperature reactions. The required high pressure/temperature condition was generated either by combining off-chip back pressure regulator and hot-oil bath,11,12 or by integrating pressure regulator, heater, and temperature sensor into a single chip.13 This work presented a microfluidic sterilization strategy by implementing the previously developed continuous flowing high pressure/temperature microfluidic reactor.Figure Figure11 shows the working principle of the present microfluidic sterilization chip. The chip consists of three zones: sample loading (a microchannel with length of 270 mm and width of 40 μm), sterilization (length of 216 mm and width of 100 μm), and pressure regulating (length of 42 mm and width of 5 μm). Three functional zones were separated by two thermal isolation trenches. The sample was injected into the chip by a syringe pump and experienced two-step filtrations (feature sizes of 20 μm and 5 μm, not shown in Figure Figure1)1) at the entrance to avoid the channel clog. All channels had the same depth of 40 μm. According to the Hagen–Poiseuille relationship,15 the pressure regulating channel had a large flow resistance (around 1.09 × 1017 Pa·s/m3, see supplementary S1 for details16) because of its small width, thereby generated a high working pressure in the upstream sterilization channel under a given flow rate. The boiling point of the solution will then be raised up by the elevated pressure in the sterilization zone followed by the Antoine equation.16 By integrating heater/temperature sensors in the pressurized zone, a high temperature environment with temperature higher than 100 °C can thereby be realized for aqueous sample sterilization. The sample was collected from the outlet and cultured at 37 °C for 12 h. Bacterial colony was counted to evaluate the sterilization performance.Open in a separate windowFIG. 1.Working principle of the present microfluidic sterilization. Only microfluidic channel, heater, and temperature sensor were schematically shown. The varied colour of the microchannel represents the pressure and that of the halation stands for the temperature.Fabrication of this chip has been introduced elsewhere.14 The fabricated chip and the experimental system are shown in Figure Figure2.2. There were two inlets of the chip. While, in the experiment, only one inlet used and connected to the syringe pump. The backup one was blocked manually. The sample load zone was arranged in between of the sterilization zone and the pressure regulating zone based on thermal management consideration. A temperature control system (heater/temperature sensor, power source, and multi-meter) was setup to provide the required high temperature. The heater and the temperature sensor were microfabricated Pt resistors. The temperature coefficient of resistance (TCR) was measured as 0.00152 K−1.Open in a separate windowFIG. 2.The fabricated chip and the experimental system. (a) Two chips with a penny for comparison. The left chip was viewed from the heater/temperature sensor side, while the right one was observed from the microchannel side (through a glass substrate). (b) The experimental system.Thermal isolation performance of the present chip before packaging with inlet/outlet was shown in Figure Figure3,3, to show the thermal interference issue. The results indicated that when the sterilization zone was heated up to 140 °C, the pressure regulating zone was about 40 °C. At this temperature, the viscosity of water decreases to 0.653 mPa·s from 1.00 mPa·s (at 20 °C), which will make the pressure in the sterilization zone reduced from 539 kPa (calculated at 20 °C and flow rate of 4 nl/s) to 387 kPa. The boiling point will then decrease to 142.8 °C, which will guarantee a boiling-free sterilization. In the cases without the thermal isolation trenches, the temperature of the pressure regulating zone reached as high as 75 °C because of the thermal interference from the sterilization zone, as shown in Figure Figure3.3. The pressure in the sterilization zone was then reduced to 268 kPa (calculated at flow rate of 4 nl/s) and the boiling temperature was around 130 °C, which was lower than the set sterilization temperature. Detail calculation can be found in supplementary S2.16Open in a separate windowFIG. 3.The temperature distribution of the chips (before packaged) with and without thermal isolation trenches (powered at 1 W). The data were extracted from the central lines of infrared images, as shown as inserts.Bacterial sterilization performance of the present chip was tested and the experimental results were shown in Figure Figure4.4. E. coli with initial concentration of 106/ml was pumped into and flew through the chip with the sterilization temperatures varied from 25 °C to 120 °C at flow rates of 2 nl/s and 4 nl/s. The outflow was collected and inoculated onto the SS agar plate evenly with inoculation loops. The population of bacteria in the outflow was counted based on the bacterial colonies after incubation at 37 °C for 12 h. Typical bacterial colonies were shown in Figure Figure4.4. The low flow rate case showed a better sterilization performance because of the longer staying period in the sterilization channel. The population of E. coli was around 1.25 × 104/ml after a 432 s-long, 70 °C sterilization (at flow rate of 2 nl/s). While at the flow rate of 4 nl/s, the cultivation result indicated the population was around 3.8 × 104/ml because the sterilization time was shorten to 216 s. A control case, where the solution flew through an un-heated chip at 2 nl/s, was conducted to investigate the effect of the shear stress on the sterilization performance (see the supplementary S3 for details16). As listed in Table TableI,I, the results indicated that the shear stress did not show any noticeable effect on the bacterial sterilization. When the chip was not heated, i.e., the case with the largest shear stress because of the highest viscosity of fluid, the bacterial cultivation was nearly the same as the off-chip results (no stress). The temperature has the most significant effect on the sterilization performance. No noticeable bacteria proliferation was observed in the cases with the sterilization temperature higher than 100 °C, as shown in Figure Figure44.

Table I.

The E. coli cultivation results under different flow rates and sterilization temperatures. a
 25 °C70 °C100 °C120 °C25 °C b
2 nl/s1.89/+++1.38/+1.16/−1.04/−0/+++
4 nl/s3.78/+++2.76/+2.32/−2.08/−0/+++
Open in a separate windowaData in the table are shear stress (Pa)/population of bacteria, where “+++” indicates a large proliferation, “+” means small but noticeable proliferation, “−” represents no proliferation.bOff-chip control group.Open in a separate windowFIG. 4.Sterilization performance of the present chip with E. coli and S. aureus as test bacteria. All the original population was 106/ml. Inserted images showed the images of the culture disk after bacteria incubation.Sterilization of another commonly encountered bacterium, Staphylococcus aureus, with initial population of 106/ml was also tested in the present chip, as shown in Figure Figure4.4. Similarly, no noticeable S. aureus proliferation was found when the sterilization temperature was higher than 100 °C.In short, we demonstrated a microfluidic sterilization strategy by utilizing a continuous flowing high temperature/pressure chip. The population of E. coli or S. aureus was reduced from 106/ml to an undetectable level when the sterilization temperature of the chip was higher than 100 °C. The chip holds promising potential in developing portable microsystem for biological/clinical applications.  相似文献   

18.
Deterministic lateral displacement (DLD) is a microfluidic size-based particle separation or filter technology with applications in cell separation and enrichment. Currently, there are no cost-effective manufacturing methods for this promising microfluidic technology. In this fabrication paper, however, we develop a simple, yet robust protocol for thermoplastic DLD devices using regulatory-approved materials and biocompatible methods. The final standalone device allowed for volumetric flow rates of 660 μl min−1 while reducing the manufacturing time to <1 h. Optical profilometry and image analysis were employed to assess manufacturing accuracy and precision; the average replicated post height was 0.48% less than the average post height on the master mold and the average replicated array pitch was 1.1% less than the original design with replicated posts heights of 62.1 ± 5.1 μm (mean ± 6 standard deviations) and replicated array pitches of 35.6 ± 0.31 μm.  相似文献   

19.
20.
Alternating current (AC) dielectrophoresis (DEP) experiments for biological particles in microdevices are typically done at a fixed frequency. Reconstructing the DEP response curve from static frequency experiments is laborious, but essential to ascertain differences in dielectric properties of biological particles. Our lab explored the concept of sweeping the frequency as a function of time to rapidly determine the DEP response curve from fewer experiments. For the purpose of determining an ideal sweep rate, homogeneous 6.08 μm polystyrene (PS) beads were used as a model system. Translatability of the sweep rate approach to ∼7 μm red blood cells (RBC) was then verified. An Au/Ti quadrapole electrode microfluidic device was used to separately subject particles and cells to 10Vpp AC electric fields at frequencies ranging from 0.010 to 2.0 MHz over sweep rates from 0.00080 to 0.17 MHz/s. PS beads exhibited negative DEP assembly over the frequencies explored due to Maxwell-Wagner interfacial polarizations. Results demonstrate that frequency sweep rates must be slower than particle polarization timescales to achieve reliable incremental polarizations; sweep rates near 0.00080 MHz/s yielded DEP behaviors very consistent with static frequency DEP responses for both PS beads and RBCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号