首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knee joint forces during downhill walking with hiking poles   总被引:1,自引:0,他引:1  
The aim of this study was to determine external and internal loads on the knee joint during downhill walking with and without hiking poles. Kinematic, kinetic and electromyographic data were collected from eight males during downhill walking on a ramp declined at 25 degrees. Planar knee joint moments and forces were calculated using a quasi-static knee model. The results were analysed for an entire pole-cycle as well as differentiated between single and double support phases and between each step of a pole-cycle. Significant differences between downhill walking with and without hiking poles were observed for peak and average magnitudes of ground reaction force, knee joint moment, and tibiofemoral compressive and shear forces (12-25%). Similar reductions were found in patellofemoral compressive force, the quadriceps tendon force and the activity of the vastus lateralis; however, because of a high variability, these differences were not significant. The reductions seen during downhill walking with hiking poles compared with unsupported downhill walking were caused primarily by the forces applied to the hiking poles and by a change in posture to a more forward leaning position of the upper body, with the effect of reducing the knee moment arm.  相似文献   

2.
The aim of this study was to analyse the important kinematic variables in elite men's and women's 20 km race walking. Thirty men and 30 women were analysed from video data recorded during the World Race Walking Cup. Video data were also recorded at four points during the European Cup Race Walking and 12 men and 12 women analysed from these data. Two camcorders operating at 50 Hz recorded at each race for 3D analysis. The two main performance determinants of speed were step length and cadence. Men were faster than women because of their greater step lengths but there was no difference in cadence. A reduction in step length was the initial cause of slowing down with later decreases in speed caused by reductions in cadence. Shorter contact times were important in optimising both step length and cadence, and faster athletes tended to have longer flight times than slower athletes. It was less clear which other kinematic variables were critical for successful walking, particularly with regard to joint angles. Different associations were found for some key variables in men and women, suggesting that their techniques may differ due to differences in height and mass.  相似文献   

3.
Joint moments can be used as an indicator of joint loading and have potential application for sports performance and injury prevention. The effects of changing walking and running speeds on joint moments for the different planes of motion still are debatable. Here, we compared knee and ankle moments during walking and running at different speeds. Data were collected from 11 recreational male runners to determine knee and ankle joint moments during different conditions. Conditions include walking at a comfortable speed (self-selected pacing), fast walking (fastest speed possible), slow running (speed corresponding to 30% slower than running) and running (at 4 m · s?1 ± 10%). A different joint moment pattern was observed between walking and running. We observed a general increase in joint load for sagittal and frontal planes as speed increased, while the effects of speed were not clear in the transverse plane moments. Although differences tend to be more pronounced when gait changed from walking to running, the peak moments, in general, increased when speed increased from comfortable walking to fast walking and from slow running to running mainly in the sagittal and frontal planes. Knee flexion moment was higher in walking than in running due to larger knee extension. Results suggest caution when recommending walking over running in an attempt to reduce knee joint loading. The different effects of speed increments during walking and running should be considered with regard to the prevention of injuries and for rehabilitation purposes.  相似文献   

4.
Abstract

The aim of this study was to analyse lower limb joint moments, powers and electromyography patterns in elite race walking. Twenty international male and female race walkers performed at their competitive pace in a laboratory setting. The collection of ground reaction forces (1000 Hz) was synchronised with two-dimensional high-speed videography (100 Hz) and electromyography of seven lower limb muscles (1000 Hz). As well as measuring key performance variables such as speed and stride length, normalised joint moments and powers were calculated. The rule in race walking which requires the knee to be extended from initial contact to midstance effectively made the knee redundant during stance with regard to energy generation. Instead, the leg functioned as a rigid lever which affected the role of the hip and ankle joints. The main contributors to energy generation were the hip extensors during late swing and early stance, and the ankle plantarflexors during late stance. The restricted functioning of the knee during stance meant that the importance of the swing leg in contributing to forward momentum was increased. The knee flexors underwent a phase of great energy absorption during the swing phase and this could increase the risk of injury to the hamstring muscles.  相似文献   

5.
This study investigated the normal and parallel ground reaction forces during downhill and uphill running in habitual forefoot strike and habitual rearfoot strike (RFS) runners. Fifteen habitual forefoot strike and 15 habitual RFS recreational male runners ran at 3 m/s ± 5% during level, uphill and downhill overground running on a ramp mounted at 6° and 9°. Results showed that forefoot strike runners had no visible impact peak in all running conditions, while the impact peaks only decreased during the uphill conditions in RFS runners. Active peaks decreased during the downhill conditions in forefoot strike runners while active loading rates increased during downhill conditions in RFS runners. Compared to the level condition, parallel braking peaks were larger during downhill conditions and parallel propulsive peaks were larger during uphill conditions. Combined with previous biomechanics studies, our findings suggest that forefoot strike running may be an effective strategy to reduce impacts, especially during downhill running. These findings may have further implications towards injury management and prevention.  相似文献   

6.
The aim of this study was to identify the kinematic and postural characteristics associated with sprint running on uphill and downhill slopes of 3 degrees and on a horizontal surface. Eight male physical education students were filmed while sprinting maximally on an uphill-downhill platform under each of three conditions: (a) uphill at 3 degrees, (b) downhill at 3 degrees and (c) horizontal. Running speed, step rate, step length, step time, contact time, flight time and selected postural characteristics of the step cycle were analysed. Running speed was 9.2% faster (P < 0.05) during downhill and 3.0% slower (P < 0.05) during uphill compared with horizontal sprint running. During downhill and uphill sprint running, step length was the main contributor to the observed changes in running speed. It increased by 7.1% (P < 0.05) for downhill sprint running and was associated with significant changes in posture at touchdown and take-off. During uphill sprint running, step length decreased by 5.2% (P < 0.05), which was associated with significant changes in posture and reduced flight distance. Given the interaction between the acute changes in step length and posture when sprinting on a sloping surface, our findings suggest that such changes in posture may detract from the specificity of training on such surfaces. The chronic effects of training on such slopes on the kinematics and posture of horizontal sprint running are currently unclear.  相似文献   

7.
Abstract

Race walking is an endurance event which also requires great technical ability, particularly with respect to its two distinguishing rules. The 50 km race walk is the longest event in the athletics programme at the Olympic Games. The aims of this observational study were to identify the important kinematic variables in elite men's 50 km race walking, and to measure variation in those variables at different distances. Thirty men were analysed from video data recorded during a World Race Walking Cup competition. Video data were also recorded at four distances during the European Cup Race Walking and 12 men analysed from these data. Two camcorders (50 Hz) recorded at each race for 3D analysis. The results of this study showed that walking speed was associated with both step length (r=0.54,P=0.002) and cadence (r=0.58,P=0.001). While placing the foot further ahead of the body at heel strike was associated with greater step lengths (r=0.45,P=0.013), it was also negatively associated with cadence (r= ?0.62,P<0.001). In the World Cup, knee angles ranged between 175 and 186° at initial contact and between 180 and 195° at midstance. During the European Cup, walking speed decreased significantly (F=9.35,P=0.002), mostly due to a decrease in step length between 38.5 and 48.5 km (t=8.59,P=0.014). From this study, it would appear that the key areas a 50 km race walker must develop and coordinate are step length and cadence, although it is also important to ensure legal walking technique is maintained with the onset of fatigue.  相似文献   

8.
ABSTRACT

The purpose of this study was to investigate the effects of slope on three-dimensional running kinematics at high speed. Thirteen male sprinters ran at high speed (7.5 m/s) on a motorised treadmill in each a level and a 5.0% slope condition. Three-dimensional motion analysis was conducted to compare centre of mass (CoM) energetics, pelvis segment and lower limb joints kinematics. We found that contact time was not affected by the slope, whereas flight time and step length were significantly shorter in uphill compared to level running. Uphill running reduced negative CoM work and increased positive CoM work compared to level running. Ankle, knee and hip joints were more flexed at initial ground contact, but only the knee was more extended at the end of stance in uphill compared to level running. Additionally, the hip joint was more abducted, and the free leg side of the pelvis was more elevated at the end of stance in uphill running. Our results demonstrate that joint motion must be developed from a more flexed/adducted position at initial contact through a greater range of motion compared to level running in order to meet the greater positive CoM work requirements in uphill running at high speed.  相似文献   

9.
Abstract

Knee functional disorders are one of the most common lower extremity non-traumatic injuries reported by cyclists. Incorrect bicycle configuration may predispose cyclist to injury but the evidence of an effect of saddle setback on knee pain remains inconclusive. The aim of this study was to determine the effect of saddle setback on knee joint forces during pedalling using a musculoskeletal modelling approach. Ten cyclists were assessed under three saddle setback conditions (range of changes in saddle position ~6 cm) while pedalling at a steady power output of 200 W and cadence of 90 rpm. A cycling musculoskeletal model was developed and knee joint forces were estimated using an inverse dynamics method associated with a static optimisation procedure. Our results indicate that moving the saddle forwards was not associated with an increase of patellofemoral joint forces. On the contrary, the tibiofemoral mean and peak compression force were 14 and 15% higher in the Backward than in the Forward condition, respectively. The peak compression force was related to neither pedal force nor quadriceps muscle force but coincided with the eccentric contraction of knee flexor muscles. These findings should benefit bike fitting practitioners and coaches in the design of specific training/rehabilitation protocols.  相似文献   

10.
Snowshoeing is a popular form of winter recreation due to the development of lightweight snowshoes that provide flotation, traction, and stability. The purpose of this study was to determine the effects of snowshoes on lower extremity kinematics during level walking. Twelve adults (6 males, 6 females, body mass = 67.5 +/- 10.7kg) completed six 3-minute level walking trials. Subjects walked overground without snowshoes and on packed snow using conventional and flexible tail snowshoes. We placed lightweight inertial/gyroscopic sensors on the sacrum, thigh, shank, and foot. We recorded sensor orientation and calculated hip, knee, and ankle joint angles and angular velocities. Compared to level overground walking, subjects had greater hip and knee flexion during stance and greater hip flexion during swing while snowshoeing. Ankle plantarflexion began during late swing when snowshoeing vs. heel strike during overground walking. Lower extremity kinematics were similar across snowshoe frame designs during level walking. Our results show that snowshoeing on packed snow results in a more flexed leg compared to overground walking and may reflect a strategy to limit the effects of walking with an extended heel.  相似文献   

11.
The aim of this study was to analyse the important kinematic variables in elite men's and women's 20 km race walking. Thirty men and 30 women were analysed from video data recorded during the World Race Walking Cup. Video data were also recorded at four points during the European Cup Race Walking and 12 men and 12 women analysed from these data. Two camcorders operating at 50 Hz recorded at each race for 3D analysis. The two main performance determinants of speed were step length and cadence. Men were faster than women because of their greater step lengths but there was no difference in cadence. A reduction in step length was the initial cause of slowing down with later decreases in speed caused by reductions in cadence. Shorter contact times were important in optimising both step length and cadence, and faster athletes tended to have longer flight times than slower athletes. It was less clear which other kinematic variables were critical for successful walking, particularly with regard to joint angles. Different associations were found for some key variables in men and women, suggesting that their techniques may differ due to differences in height and mass.  相似文献   

12.
Previous studies have linked footwear traction to lower extremity non-contact injury; however, these studies mainly focussed on rotational traction exclusively. While studies have shown that increases in traction lead to increases in joint loading, represented by joint moments, these studies failed to determine how the individual components of rotational and translational traction affect joint loading. Therefore, this study investigated how each component of traction independently affects lower extremity joint loading. Traction testing was performed using a robotic testing machine on three shoes that had independent alterations of translational and rotational traction. All testing was conducted on a sample piece of artificial turf. Kinematic and kinetic data were then collected on 10 athletes performing two cutting movements in each shoe condition. As rotational and translational traction were independently altered, decreased rotational traction led to significant decreases in transverse and frontal plane joint loading at the ankle and knee joints, while increases in translational traction led to increases in frontal plane joint loading at the ankle and knee joints. Increases in joint loading in the transverse and frontal planes are one of the possible mechanisms of lower extremity non-contact injury. Both translational and rotational traction can independently alter the joint loading.  相似文献   

13.
ABSTRACT

Previous research on unstable footwear has suggested that it may induce mechanical noise during walking. The purpose of this study was to explore whether unstable footwear could be considered as a noise-based training gear to exercise body center of mass (CoM) motion during walking. Ground reaction forces were collected among 24 healthy young women walking at speeds between 3 and 6 km h?1 with control running shoes and unstable rocker-bottom shoes. The external mechanical work, the recovery of mechanical energy of the CoM during and within the step cycles, and the phase shift between potential and kinetic energy curves of the CoM were computed. Our findings support the idea that unstable rocker-bottom footwear could serve as a speed-dependent noise-based training gear to exercise CoM motion during walking. At slow speed, it acts as a stochastic resonance or facilitator that reduces external mechanical work; whereas at brisk speed it acts as a constraint that increases external mechanical work and could mimic a downhill slope.  相似文献   

14.
The aim of this study was to examine spatiotemporal characteristics and joint angles during forward and backward walking in water at low and high stride frequency. Eight healthy adults (22.1 ± 1.1 years) walked forward and backward underwater at low (50 pulses) and high frequency (80 pulses) at the xiphoid process level with arms crossed at the chest. The main differences observed were that the participants presented a greater speed (0.58 vs. 0.85 m/s) and more asymmetry of the step length (1.24 vs. 1.48) at high frequency whilst the stride and step length (0.84 vs. 0.7 m and 0.43 vs. 0.35 m, respectively) were lower compared to low frequency (P < 0.05). Support phase duration was higher at forward walking than backward walking (61.2 vs. 59.0%). At initial contact, we showed that during forward walking, the ankle and hip presented more flexion than during backward walking (ankle: 84.0 vs. 91.8º and hip: 22.8 vs. 8.0º; P < 0.001). At final stance, the knee and hip were more flexed at low frequency than at high frequency (knee: 150.0 vs. 157.0º and hip: ?12.2 vs. –14.5º; P < 0.001). The knee angle showed more flexion at forward walking (134.0º) than backward walking (173.1º) (P < 0.001). In conclusion, these results show how forward and backward walking in water at different frequencies differ and contribute to a better understanding of this activity in training and rehabilitation.  相似文献   

15.
The purpose of this study was to investigate kinematic and spatiotemporal variables of aquatic treadmill walking at three different water depths. A total of 15 healthy individuals completed three two-minute walking trials at three different water depths. The aquatic treadmill walking was conducted at waist-depth, chest-depth and neck-depth, while a customised 3-D underwater motion analysis system captured their walking. Each participant’s self-selected walking speed at the waist level was used as a reference speed, which was applied to the remaining two test conditions. A repeated measures ANOVA showed statistically significant differences among the three walking conditions in stride length, cadence, peak hip extension, hip range of motion (ROM), peak ankle plantar flexion and ankle ROM (All p values < 0.05). The participants walked with increased stride length and decreased cadence during neck level as compared to waist and chest level. They also showed increased ankle ROM and decreased hip ROM as the water depth rose from waist and chest to the neck level. However, our study found no significant difference between waist and chest level water in all variables. Hydrodynamics, such as buoyancy and drag force, in response to changes in water depths, can affect gait patterns during aquatic treadmill walking.  相似文献   

16.
ABSTRACT

Chronic foot and ankle injuries are common in dancers; understanding how lower extremity loading changes in response to altered task goals can be beneficial for rehabilitation and injury prevention strategies. The purpose of this study was to examine mechanical demands during jump take-offs when the task goal was modified to focus on either increasing jump distance or increasing jump height. It was hypothesized that a jump strategy focused on height would result in decreased energetic demands on the foot and ankle joints. Thirty healthy, experienced female dancers performed saut de chat leaps while travelling as far as possible (FAR) or jumping as high as possible (UP). Ground reaction force (GRF) impulses and peak sagittal plane net joint moments and sagittal plane mechanical energy expenditure (MEE) of the metatarsophalangeal (MTP), ankle, knee, and hip joints were calculated. During take-off, vertical and horizontal braking GRF impulses were greater and horizontal propulsive GRF impulse was lower in the UP condition. MEE at the MTP, ankle, and hip joints was lower in UP, and MEE at the knee was higher in UP. These results suggest that a strategy focused on height may be helpful in unloading the ankle and MTP joints during dance leaps.  相似文献   

17.
Walking is one of the preferred exercises among elderly, but could a prolonged walking increase gait variability, a risk factor for a fall in the elderly? Here we determine whether 30 min of treadmill walking increases coefficient of variation of gait in elderly. Because gait responses to exercise depend on fitness level, we included 15 sedentary and 15 active elderly. Sedentary participants preferred a lower gait speed and made smaller steps than the actives. Step length coefficient of variation decreased ~16.9% by the end of the exercise in both the groups. Stride length coefficient of variation decreased ~9% after 10 minutes of walking, and sedentary elderly showed a slightly larger step width coefficient of variation (~2%) at 10 min than active elderly. Active elderly showed higher walk ratio (step length/cadence) than sedentary in all times of walking, but the times did not differ in both the groups. In conclusion, treadmill gait kinematics differ between sedentary and active elderly, but changes over time are similar in sedentary and active elderly. As a practical implication, 30 min of walking might be a good strategy of exercise for elderly, independently of the fitness level, because it did not increase variability in step and stride kinematics, which is considered a risk of fall in this population.  相似文献   

18.
Negative work, which is mainly generated by eccentric muscle contraction, has an important influence on the associated muscle damage. Generally, mechanical parameters are determined for one side of a lower extremity on the assumption of negligible between-limb differences. However, between-limb differences in the negative work of lower extremity joints during running remain unclear. This study examines between-limb differences in negative work and associated mechanical parameters during the contact phase of running. Twenty-five young adult males voluntarily participated in this study. Each participant was asked to run on a straight runway at a speed of 3.0?m?s?1. Negative work, amplitude, duration of negative power, moment, and angular velocity were computed for both sides of the lower extremities. Significant differences were found in negative work between limbs for the hip (18.9?±?11.7%), knee (13.6?±?10.4%), and ankle (11.8?±?8.5%) joints. For the hip joint, asymmetric negative work was attributable to the between-limb difference in the amplitude of negative power owing to a corresponding difference in the moment. The between-limb differences concerning the duration and amplitude of negative power could explain the asymmetric negative work in the knee joint. The asymmetric negative work of the ankle joint was attributable to the between-limb difference in the amplitude and duration of the negative power and the moment. These results indicate that asymmetric negative work was generated in each lower extremity joint; however, the major mechanical parameters corresponding to the negative work are not the same across the joints.  相似文献   

19.
Limited evidence showed that higher workload increases knee forces without effects from changes in pedalling cadence. This study assessed the effects of workload and cadence on patellofemoral and tibiofemoral joint forces using a new model. Right pedal force and lower limb joint kinematics were acquired for 12 competitive cyclists at two levels of workload (maximal and second ventilatory threshold) at 90 and 70 rpm of pedalling cadence. The maximal workload showed 18% larger peak patellofemoral compressive force PFC (large effect size, ES) than the second ventilatory threshold workload (90 rpm). In the meantime, the 90-rpm second ventilatory threshold was followed by a 29% smaller PFC force (large ES) than the 70-rpm condition. Normal and anterior tibiofemoral compressive forces were not largely affected by changes in workload or pedalling cadence. Compared to those of previous studies, knee forces normalized by workload were larger for patellofemoral (mean = 19 N/J; difference to other studies = 20–45%), tibiofemoral compressive (7.4 N/J; 20–572%), and tibiofemoral anterior (0.5 N/J; 60–200%) forces. Differences in model design and testing conditions (such as workload and pedalling cadence) may affect prediction of knee joint forces.  相似文献   

20.
目的:确定跑步疲劳进程中下肢生物力学模式的变化,包括垂直和前后地面反作用力(ground reaction force,GRF)、垂直地面反作用力(vertical ground reaction force,vGRF)负载率、关节力学和刚度。方法:14名男性受试,采用Vicon红外摄像头和Bertec三维测力跑台,每隔2 min采集受试疲劳干预中的15 s GRF数据以及标记点轨迹。受试需穿着统一的跑鞋在测力跑台以恒速3.33 m/s跑至疲劳。满足以下标准时,干预结束:1)最大心率大于当下年龄的90%;2)受试不能继续跑步。对比受试跑至疲劳进程中4个时刻(疲劳前、33%、67%和100%)的着地冲击和下肢三关节触地角度、最大角度、关节活动度、角度变化量、关节蹬伸力矩和刚度等特征,采集并分析受试安静状态、疲劳后即刻、疲劳后4 min、疲劳后9 min的血乳酸浓度。结果:与疲劳前相比,1)血乳酸浓度在疲劳后即刻、疲劳后4 min和疲劳后9 min均显著增加;2)垂直/前后矢状轴GRF和vGRF负载率等参数在疲劳干预过程中均未观察到显著性变化;3)髋关节活动度在疲劳过程的33%、67%和100%时刻显著增加,膝关节活动度在67%时刻显著增加;4)踝关节运动学及踝、膝和髋关节的蹬伸力矩峰值均无变化;5)垂直刚度在67%和100%时刻显著降低。结论:疲劳干预过程中,GRF特征参数均没有明显变化,但是观察到下肢运动学和动力学模式的非线性改变。特别是从疲劳干预中期开始,人体下肢通过增加髋、膝关节活动度并减小垂直刚度实现“软着陆”策略,维持相似的冲击力特征,以减小长时间跑步可能带来损伤的风险。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号