首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Xie Q  Zhou Q  Xie F  Sang J  Wang W  Zhang HA  Wu W  Li Z 《Biomicrofluidics》2012,6(1):16502-165028
This paper introduced a wafer-scale fabrication approach for the preparation of nanochannels with high-aspect ratio (the ratio of the channel depth to its width). Edge lithography was used to pattern nanogaps in an aluminum film, which was functioned as deep reactive ion etching mask thereafter to form the nanochannel. Nanochannels with aspect ratio up to 172 and width down to 44 nm were successfully fabricated on a 4-inch Si wafer with width nonuniformity less than 13.6%. A microfluidic chip integrated with nanometer-sized filters was successfully fabricated by utilizing the present method for geometric-controllable nanoparticle packing.  相似文献   

2.
Precise patterning of metals is required for diverse microfluidic and microelectromechanical system (MEMS) applications ranging from the separation of proteins to the manipulation of single cells and drops of water-in-oil emulsions. Here we present a very simple, inexpensive method for fabricating micropatterned electrodes. We deposit a thin metal layer of controlled thickness using wet chemistry, thus eliminating the need for expensive equipment typically required for metal deposition. We demonstrate that the resulting deposited metal can be used to fabricate functional electrodes: The wet-deposited metal film can sustain patterning by photolithography down to micron-sized features required for MEMS and microfluidic applications, and its properties are suitable for operative electrodes used in a wide range of microfluidic applications for biological studies.  相似文献   

3.
本研究结合技术轨道特性界定了技术锁定的内涵与特征,提出一种识别技术锁定的新方法。以光刻技术为例,通过构建专利引文网络识别技术主路径,描绘其技术轨道的动态演化,追溯了不同技术来源在不同阶段的技术贡献,并从技术和地域不同层面分析了技术多样性。研究结果表明:从1980-2010年,光刻技术长期处在锁定状态,然而从2010年之后,技术呈现出多样化的发展方向。光刻技术早期被美国、德国和日本控制,近些年随着技术多样性指数上升,后发国家逐渐兴起,韩国和台湾对近期的光刻技术贡献较大,主要集中在光刻胶技术上。中国的光刻技术与发达国家有较大的差距,尚未出现在技术发展主路径中,技术类别涉及范围有限,技术贡献较小。本研究对于探索技术锁定形成,识别技术机会,破解我国“技术锁定”困局具有重大启示。  相似文献   

4.
We present the conformal coating of non-spherical magnetic particles in a co-laminar flow microfluidic system. Whereas in the previous reports spherical particles had been coated with thin films that formed spheres around the particles; in this article, we show the coating of non-spherical particles with coating layers that are approximately uniform in thickness. The novelty of our work is that while liquid-liquid interfacial tension tends to minimize the surface area of interfaces—for example, to form spherical droplets that encapsulate spherical particles—in our experiments, the thin film that coats non-spherical particles has a non-minimal interfacial area. We first make bullet-shaped magnetic microparticles using a stop-flow lithography method that was previously demonstrated. We then suspend the bullet-shaped microparticles in an aqueous solution and flow the particle suspension with a co-flow of a non-aqueous mixture. A magnetic field gradient from a permanent magnet pulls the microparticles in the transverse direction to the fluid flow, until the particles reach the interface between the immiscible fluids. We observe that upon crossing the oil-water interface, the microparticles become coated by a thin film of the aqueous fluid. When we increase the two-fluid interfacial tension by reducing surfactant concentration, we observe that the particles become trapped at the interface, and we use this observation to extract an approximate magnetic susceptibility of the manufactured non-spherical microparticles. Finally, using fluorescence imaging, we confirm the uniformity of the thin film coating along the entire curved surface of the bullet-shaped particles. To the best of our knowledge, this is the first demonstration of conformal coating of non-spherical particles using microfluidics.  相似文献   

5.
史Jun 《科技通报》1991,7(5):251-254
介绍了用不同脉宽、不同波长的钇铝石榴石(Nd:YAG)激光在不同厚度的金属样品中产生超声脉冲的实验。超声波的接收是用聚偏氟乙烯薄膜(PVDF)实现的。文中给出了激光超声脉冲及其在金属板中的回波的波形曲线;测量了不同条件下激光超声幅度与激光能量的关系,超声幅度与激光波长的关系,以及超声脉宽和激光脉宽的关系;观察到了激光超声的传播方向总是沿被照表面的法线方向,而与激光的入射角无关。实验结果表明,激光超声作为一种非接触的超声源,对于工业应用尤其是高温运动状态下对弯曲表面的工件(如管材等)进行厚度测量和探伤具有广阔的应用前景,也将是激光与物质相互作用领域的一种重要研究手段。  相似文献   

6.
A broad range of microfluidic applications, ranging from cell culture to protein crystallization, requires multilevel devices with different heights and feature sizes (from micrometers to millimeters). While state-of-the-art direct-writing techniques have been developed for creating complex three-dimensional shapes, replication molding from a multilevel template is still the preferred method for fast prototyping of microfluidic devices in the laboratory. Here, we report on a "dry and wet hybrid" technique to fabricate multilevel replication molds by combining SU-8 lithography with a dry film resist (Ordyl). We show that the two lithography protocols are chemically compatible with each other. Finally, we demonstrate the hybrid technique in two different microfluidic applications: (1) a neuron culture device with compartmentalization of different elements of a neuron and (2) a two-phase (gas-liquid) global micromixer for fast mixing of a small amount of a viscous liquid into a larger volume of a less viscous liquid.  相似文献   

7.
8.
Despite the myriad of soft lithography based micropatterning methods available to researchers, it is still challenging to define small features (10–100 μm) that are spaced far apart (1–10 mm). In this report, we describe a combined microfluidic-microstencil patterning method that can produce multifunctional substrates of small features, O(10 μm), with a large pitch, O(1 mm). In that, we fabricate microstencils using an UV curable polyurethane (Norland Optical Adhesive 81) with dense arrays of 10–100 μm holes. Overlaying arrays of microfluidic channels over these microstencils allow for the control of the spacing between features and the ability to pattern multiple substrates. We show that this method is capable of patterning soluble proteins, fibrillar insoluble collagen, liposomes, cells, and nanoparticles. We demonstrate the utility of the method by measuring platelet adhesion under flow to three adhesive proteins (insoluble fibrillar collagen, laminin, and reconstituted acid solubilized collagen fibers) in a single assay.  相似文献   

9.
WTe2, as a type-II Weyl semimetal, has 2D Fermi arcs on the (001) surface in the bulk and 1D helical edge states in its monolayer. These features have recently attracted wide attention in condensed matter physics. However, in the intermediate regime between the bulk and monolayer, the edge states have not been resolved owing to its closed band gap which makes the bulk states dominant. Here, we report the signatures of the edge superconductivity by superconducting quantum interference measurements in multilayer WTe2 Josephson junctions and we directly map the localized supercurrent. In thick WTe2 (, the supercurrent is uniformly distributed by bulk states with symmetric Josephson effect (). In thin WTe2 (10 nm), however, the supercurrent becomes confined to the edge and its width reaches up to and exhibits non-symmetric behavior . The ability to tune the edge domination by changing thickness and the edge superconductivity establishes WTe2 as a promising topological system with exotic quantum phases and a rich physics.  相似文献   

10.
In recent years, there has been a dramatic increase in the use of poly(dimethylsiloxane) (PDMS) devices for cell-based studies. Commonly, the negative tone photoresist, SU8, is used to pattern features onto silicon wafers to create masters (SU8-Si) for PDMS replica molding. However, the complexity in the fabrication process, low feature reproducibility (master-to-master variability), silane toxicity, and short life span of these masters have been deterrents for using SU8-Si masters for the production of cell culture based PDMS microfluidic devices. While other techniques have demonstrated the ability to generate multiple devices from a single master, they often do not match the high feature resolution (∼0.1 μm) and low surface roughness that soft lithography masters offer. In this work, we developed a method to fabricate epoxy-based masters that allows for the replication of features with high fidelity directly from SU8-Si masters via their PDMS replicas. By this method, we show that we could obtain many epoxy based masters with equivalent features to a single SU8-Si master with a low feature variance of 1.54%. Favorable feature transfer resolutions were also obtained by using an appropriate Tg epoxy based system to ensure minimal shrinkage of features ranging in size from ∼100 μm to <10 μm in height. We further show that surface coating epoxy masters with Cr/Au lead to effective demolding and yield PDMS chambers that are suitable for long-term culturing of sensitive primary hippocampal neurons. Finally, we incorporated pillars within the Au-epoxy masters to eliminate the process of punching media reservoirs and thereby reducing substantial artefacts and wastage.  相似文献   

11.
To study an environmental or biological solution, it is essential to separate its constituents. In this study, a 3D-deformable dynamic microfilter was developed to selectively separate the target substance from a solution. This microfilter is a fine metallic nickel structure fabricated using photolithography and electroplating techniques. It is gold-coated across its entire surface with multiple slits of 10–20 μm in width. Its two-dimensional shape is deformed into a three-dimensional shape when used for fluid separation due to hydrodynamic forces. By adjusting the pressure applied to the microfilter, the size of the gap created by deformation can be changed. To effectively isolate the target substance, the relationship between the solution flow rate and the extent of microfilter deformation was investigated. The filtration experiments demonstrated the microfilter’s ability to isolate the target substance with elastic deformation without undergoing plastic deformation. Additionally, modification of the microfilter surface with nucleic acid aptamers resulted in the selective isolation of the target cell, which further demonstrates the potential application of microfilters in the isolation of specific components of heterogeneous solutions.  相似文献   

12.
We have developed a two-step electron-beam lithography process to fabricate a tandem array of three pairs of tip-like gold nanoelectronic detectors with electrode gap size as small as 9 nm, embedded in a coplanar fashion to 60 nm deep, 100 nm wide, and up to 150 μm long nanochannels coupled to a world-micro-nanofluidic interface for easy sample introduction. Experimental tests with a sealed device using DNA-protein complexes demonstrate the coplanarity of the nanoelectrodes to the nanochannel surface. Further, this device could improve transverse current detection by correlated time-of-flight measurements of translocating samples, and serve as an autocalibrated velocimeter and nanoscale tandem Coulter counters for single molecule analysis of heterogeneous samples.  相似文献   

13.
Pontryagin's maximum principles are applied to obtain the solution of minimum mass convective fins with variable heat transfer coefficients. It is shown that the volume and the width of the fin are uniquely related to the specified heat transfer rate and the properties of the material. For a power law spatial variation of the heat transfer coefficient, the results are set forth in a dimensionless form and they are given in tables or graphs, in order to aid design procedures. Several properties relating to the optimum volume, base thickness and the width of the fins with the properties of the material are also discussed. The method can also be used to solve problems of minimum mass fins having restricted width, often encountered in practice.  相似文献   

14.
用蒙脱石与Nafion制备了阳离子染料中性红化学修饰电极(CME).两种CME在支持电解质溶液中有相似的循环伏安行为.蒙脱石CME的峰电流随膜厚增加而增加,而NafionCME的峰电流随膜厚增加有所降低.阳离子染料在蒙脱石膜内的扩散系数比在Nafion膜中的扩散系数大一个数量级.阴离子电活性物以及不同的制备方法对两种CME的电化学响应有不同的影响.两种CME在性质上的差异反映了两种膜的微结构与通透性等方面的差别.蒙脱石用作制备化学修饰电极的表面层材料有一定吸引力.  相似文献   

15.
一维光子晶体传输矩阵法的分析改进   总被引:2,自引:0,他引:2  
为了更准确地分析一维光子晶体的光子禁带特性和研究改善光子晶体性能的方法,通过在传输矩阵法的推导过程中加入了多重反射的概念和修正了传输矩阵的相位项,改进了用传输矩阵分析一维光子晶体禁带特性的方法,提高了计算精确度,结合理论仿真数据与实验测量值的对比证明了该改进算法的有效性,尤其是在非垂直入射的情况下,改进算法与实验数据符合良好。另外还探讨了组成光子晶体膜层的高低折射率介质的折射率比值,光学厚度,周期数等参数对光子禁带特性的影响,并提出了通过选用合适的光学厚度和周期数,采用新型材料,引入多缺陷态结构等改进一维光子晶体禁带特性的初步设想。  相似文献   

16.
Manipulation of magnetic beads plays an increasingly important role in molecular diagnostics. Magnetophoresis is a promising technique for selective transportation of magnetic beads in lab-on-a-chip systems. We investigate periodic arrays of exchange-biased permalloy microstripes fabricated using a single lithography step. Magnetic beads can be continuously moved across such arrays by combining the spatially periodic magnetic field from microstripes with a rotating external magnetic field. By measuring and modeling the magnetophoresis properties of thirteen different stripe designs, we study the effect of the stripe geometry on the magnetophoretic transport properties of the magnetic microbeads between the stripes. We show that a symmetric geometry with equal width of and spacing between the microstripes facilitates faster transportation and that the optimal period of the periodic stripe array is approximately three times the height of the bead center over the microstripes.  相似文献   

17.
Song W  Psaltis D 《Biomicrofluidics》2011,5(4):44110-4411011
We present a novel image-based method to measure the on-chip microfluidic pressure and flow rate simultaneously by using the integrated optofluidic membrane interferometers (OMIs). The device was constructed with two layers of structured polydimethylsiloxane (PDMS) on a glass substrate by multilayer soft lithography. The OMI consists of a flexible air-gap optical cavity which upon illumination by monochromatic light generates interference patterns that depends on the pressure. These interference patterns were captured with a microscope and analyzed by computer based on a pattern recognition algorithm. Compared with the previous techniques for pressure sensing, this method offers several advantages including low cost, simple fabrication, large dynamic range, and high sensitivity. For pressure sensing, we demonstrate a dynamic range of 0-10 psi with an accuracy of ±2% of full scale. Since multiple OMIs can be integrated into a single chip for detecting pressures at multiple locations simultaneously, we also demonstrated a microfluidic flow sensing by measuring the differential pressure along a channel. Thanks to the simple fabrication that is compatible with normal microfluidics, such OMIs can be easily integrated into other microfluidic systems for in situ fluid monitoring.  相似文献   

18.
Nam SH  Lee HJ  Son KJ  Koh WG 《Biomicrofluidics》2011,5(3):32001-3200110
A non-positional (or suspension) cell microarray was developed using shape-coded SU-8 photoresist microboards for potential application in multiplex and high-throughput cell-based assays. A conventional photolithography process on glass slides produced various shapes of SU-8 micropatterns that had a lateral dimension of 200 μm and a thickness of 40 μm. The resultant micropatterns were detached from the slides by sonication and named "microboards" due to the fact that had a much larger lateral dimension than thickness. The surfaces of the SU-8 microboards were modified with collagen to promote cell adhesion, and it was confirmed that collagen-coated SU-8 microboards supported cell adhesion and proliferation. Seeding of cells into poly(ethylene glycol)(PEG) hydrogel-coated well plates containing collagen-modified microboards resulted in selective cell adhesion onto the microboards due to the non-adhesiveness of PEG hydrogel toward cells, thereby creating non-positional arrays of microboards carrying cells. Finally, two different cell types (fibroblasts and HeLa cells) were separately cultured on different shapes of microboards and subsequently mixed together to create a non-positional cell microarray consisting of multiple cell types where each cell could be easily identified by the shape of the microboard to which they had adhered. Because numerous unique shapes of microboards can be fabricated using this method by simply changing the photomask designs, high throughput and multiplex cell-based assays would be easily achieved with this system in the future.  相似文献   

19.
The lack of technologies that combine automated manipulation, sorting, as well as immobilization of single metazoan embryos remains the key obstacle to high-throughput organism-based ecotoxicological analysis and drug screening routines. Noticeably, the major obstacle hampering the automated trapping and arraying of millimetre-sized embryos on chip-based devices is their substantial size and mass, which lead to rapid gravitational-induced sedimentation and strong inertial forces. In this work, we present a comprehensive mechanistic and design rationale for manipulation and passive trapping of individual zebrafish embryos using only hydrodynamic forces. We provide evidence that by employing innovative design features, highly efficient hydrodynamic positioning of large embryos on a chip can be achieved. We also show how computational fluid dynamics-guided design and the Lagrangian particle tracking modeling can be used to optimize the chip performance. Importantly, we show that rapid prototyping and medium scale fabrication of miniaturized devices can be greatly accelerated by combining high-speed laser prototyping with replica moulding in poly(dimethylsiloxane) instead of conventional photolithography techniques. Our work establishes a new paradigm for chip-based manipulation of large multicellular organisms with diameters well above 1 mm and masses often exceeding 1 mg. Passive docking of large embryos is an attractive alternative to provide high level of automation while alleviating potentially deleterious effects associated with the use of active chip actuation. This greatly expands the capabilities of bioanalyses performed on small model organisms and offers numerous and currently inaccessible laboratory automation advantages.  相似文献   

20.
A simple and effective universal serial bus (USB) flash disk type microfluidic chip electrophoresis (MCE) was developed by using poly(dimethylsiloxane) based soft lithography and dry film based printed circuit board etching techniques in this paper. The MCE had a microchannel diameter of 375 μm and an effective length of 25 mm. Equipped with a conventional online electrochemical detector, the device enabled effectively separation of bovine serum albumin, lysozyme, and cytochrome c in 80 s under the ultra low voltage from a computer USB interface. Compared with traditional capillary electrophoresis, the USB flash disk type MCE is not only portable and inexpensive but also fast with high separation efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号