首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
This paper considers the tracking control of fractional-order nonlinear systems (FONSs) in triangular form with actuator faults by means of sliding mode control (SMC) and composite learning SMC (CLSMC). In SMC design, a fractional sliding surface is introduced, and an adaptation law is designed to update the estimation of the mismatched parametric uncertainty in the actuator faults. The proposed SMC can guarantee the convergence of the tracking error where a persistent excitation (PE) condition should be satisfied. To overcome this limitation, by using the online recorded data and the instantaneous data, a prediction error of the parametric uncertainty is defined. Both the tracking error and the prediction error are utilized to generate a composite learning law. A composite learning law is designed by using the prediction error and the tracking error. The proposed CLSMC can guarantee not only the stability of system but also the accurate estimation of the parametric uncertainties in the actuator faults. In CLSMC, only an interval-excitation (IE) condition that is weaker than the PE one should be satisfied. Finally, simulation example is presented to show the control performance of the proposed methods.  相似文献   

2.
《Journal of The Franklin Institute》2023,360(14):10605-10632
Relative degree (RD) approach is a powerful tool for obtaining system's input-output dynamics used for output tracking controller designs of minimum phase systems. Designs using the RD alone can fail due both to insufficient control authority in minimum phase systems, and instability of internal/zero dynamics attributed to nonminimum phase systems. A novel definition and a concept of Practical Generalized RD (PGRD) are proposed in this paper and are used in concert with Sliding Mode Control (SMC) to compensate for system perturbations in minimum phase systems. The use of known Generalized Relative Degree (GRD) in nonminimum phase systems allows for the elimination of internal dynamics. However, instability that emerges in the corresponding control dynamic extension is defeating any output tracking controller design. A novel methodology of using GRD for designing continuous SMC in nonminimum phase systems is presented. An algorithm for generating a bounded solution of the unstable dynamic extension is proposed and used in concert with SMC, allowing robust control design for nonminimum phase systems. The efficacy of the proposed GRD-based approaches is demonstrated on a minimum and nonminimum phase rocket attitude control problem both analytically and via simulation.  相似文献   

3.
This paper considers the control problem of spacecraft line-of-sight (LOS) relative motion with thrust saturation in the presence of unmodeled dynamics, external disturbance and unknown mass property. By using skew-symmetric property, reference trajectory generator and anti-windup technique, a novel passivity-based adaptive sliding mode control (SMC) scheme is proposed without prior knowledge of uncertainty/disturbance bound. Within the Lyapunov framework, the establishment of a real sliding mode (which induces the practical stability of closed-loop error system) is validated. The main contributions are that a new control gain adaptive algorithm is adopted to attenuate the overestimation of switching gain and a differentiable projection-based parameter adaptive algorithm is proposed to force the mass approximator to remain in a desired domain, then the adaptive control law is modified by the reference trajectory generator and anti-windup technique to compensate for the effect of thrust saturation. Finally, simulations are conducted to show the fine performance of proposed control scheme.  相似文献   

4.
This paper investigates the fractional-order (FO) adaptive neuro-fuzzy sliding mode control issue for a class of fuzzy singularly perturbed systems subject to the matched uncertainties and external disturbances. Firstly, a novel FO fuzzy sliding mode surface is presented. Secondly, by introducing an appropriate ε-dependent Lyapunov function, some H performance analysis criteria are given, which also ensure the robust stability of the sliding mode dynamics. Furthermore, a hybrid neuro-fuzzy network system (HNFNS) is introduced to estimate the matched uncertainty. Moreover, an FO adaptive fuzzy sliding mode controller is designed to drive the state trajectories of fuzzy singularly perturbed systems to the predefined FO sliding mode surface within a finite-time. Finally, two verification examples are presented to illustrate the validity of the proposed FO control scheme.  相似文献   

5.
《Journal of The Franklin Institute》2019,356(17):10296-10314
This paper investigates the problem of distributed event-triggered sliding mode control (SMC) for switched systems with limited communication capacity. Moreover, the system output and switching signals are both considered to be sampled by distributed digital sensors, which may cause control delay and asynchronous switching. First of all, a novel distributed event-triggering scheme for switched systems is proposed to reduce bandwidth requirements. Then, a state observer is designed to estimate the system state via sampled system output with transmission delay. Based on the observed system state, a switched SMC law and corresponding switching law are designed to guarantee the exponential stability of the closed-loop system with H performance. Finally, an application example is given to illustrate the effectiveness of the proposed method.  相似文献   

6.
Model reference adaptive control algorithms with minimal controller synthesis have proven to be an effective solution to tame the behaviour of linear systems subject to unknown or time-varying parameters, unmodelled dynamics and disturbances. However, a major drawback of the technique is that the adaptive control gains might exhibit an unbounded behaviour when facing bounded disturbances. Recently, a minimal controller synthesis algorithm with an integral part and either parameter projection or σ-modification strategies was proposed to guarantee boundedness of the adaptive gains. In this article, these controllers are experimentally validated for the first time by using an electro-mechanical system subject to significant rapidly varying disturbances and parametric uncertainty. Experimental results confirm the effectiveness of the modified minimal controller synthesis methods to keep the adaptive control gains bounded while providing, at the same time, tracking performances similar to that of the original algorithm.  相似文献   

7.
Mismatched uncertainty and chattering appear as two challenges in sliding mode control. To overcome the problem of mismatched uncertainty, multiple sliding surfaces with virtual inputs are proposed. Accordingly, we have proposed two new methods based on designed neural observer: sliding mode control (SMC) and dynamic sliding mode control (DSMC) methods. Although, the proposed SMC can significantly cope with the mismatched uncertainties, but it suffers from chattering phenomenon. The chattering problem can be removed in DSMC, because an integrator is placed before the system. This results in increased number of the system states. This new state can be identified with the proposed neural observer. Note that in both proposed approaches, the robust performance (invariance property) of system is reserved, even in the presence of mismatch uncertainties. Then, to have a valid comparison the proposed DSMC is also designed using loop transfer recovery observer (LTRO). This comparison shows the good performance of the DSMC based neural networks. Moreover, the upper bound of uncertainties is not used in SMC and DSMC controllers and also in the neural observer and LTRO, which is important in practical implementation. Finally, comparing the equations, one can see the simplicity of DSMC in concept and also in realization.  相似文献   

8.
This paper addresses the problem of hybrid synchronization for hyperchaotic Lu systems without and with uncertain parameters via a single input sliding mode controller (SMC). Based on the SMC approach, the proposed controller not only minimizes the influence of uncertainty but also enhances the robustness of the system. The uncertain parameters are estimated by using new adaptation laws which ensure the uncertain parameters convergence to their original value. A hybrid synchronization scheme is useful to maintain the vastly secured and secrecy in the area of secure communication by using the control theory approach. The proposed hybrid synchronization results are providing a superiority of forming a chaotic secure communication scheme. Finally, a numerical example is provided to demonstrate the validity of the theoretical analysis.  相似文献   

9.
The problem of position tracking of a mini drone subject to wind perturbations is investigated. The solution is based on a detailed unmanned aerial vehicle (UAV) model, with aerodynamic coefficients and external disturbance components, which is introduced in order to better represent the impact of the wind field. Then, upper bounds of wind-induced disturbances are characterized, which allow a sliding mode control (SMC) technique to be applied with guaranteed convergence properties. The peculiarity of the considered case is that the disturbance upper bounds depend on the control amplitude itself (i.e. the system is nonlinear in control), which leads to a new procedure for the control tuning presented in the paper. The last part of the paper is dedicated to the analysis and reduction of chattering effects, as well as investigation of rotor dynamics issues. Conventional SMC with constant gains, proposed first order SMC, and proposed quasi-continuous SMC are compared. Nonlinear UAV simulator, validated through in-door experiments, is used to demonstrate the effectiveness of the proposed controls.  相似文献   

10.
The design of an adaptive sliding mode control (SMC) scheme is proposed in this paper for stabilizing a class of dynamic systems with matched and mismatched perturbations. Two methods for designing a novel sliding surface function are introduced first. By utilizing a pseudocontrol input in the sliding surface function, one cannot only suppress the mismatched perturbations in the sliding mode, but also obtain the property of asymptotical stability. Then a sliding mode controller is designed to drive the controlled systems to the designated sliding surface in a finite time. Adaptive mechanism is also embedded in the controller as well as in the sliding surface function designed from the second method to overcome the perturbations, so that the informations of upper bound of perturbations are not required. An application of flight control and experimental results of controlling a servomotor are also given for demonstrating the applicability of the proposed control scheme.  相似文献   

11.
《Journal of The Franklin Institute》2023,360(14):10582-10604
In this paper, the optimal model reference adaptive control (MRAC) problem is studied for the unknown discrete-time nonlinear systems with input constraint under the premise of considering robustness to uncertainty. Through an input constraint auxiliary system, a new adaptive-critic-based MRAC algorithm is proposed to transform the above problem into the optimal regulation problem of the auxiliary error system with lumped uncertainty. In order to realize the chattering-free sliding model control for the auxiliary error system, an action-critic variable is introduced into the adaptive identification learning. In this case, the closed-loop control system is robust to the disturbance and the neural network approximation error. The uniformly ultimate bounded property is proved by the Lyapunov method, and the effectiveness of the algorithm is verified by a simulation example.  相似文献   

12.
This paper focuses on the problem of direct adaptive neural network (NN) tracking control for a class of uncertain nonlinear multi-input/multi-output (MIMO) systems by employing backstepping technique. Compared with the existing results, the outstanding features of the two proposed control schemes are presented as follows. Firstly, a semi-globally stable adaptive neural control scheme is developed to guarantee that the ultimate tracking errors satisfy the accuracy given a priori, which cannot be carried out by using all existing adaptive NN control schemes. Secondly, we propose a novel adaptive neural control approach such that the closed-loop system is globally stable, and in the meantime the ultimate tracking errors also achieve the tracking accuracy known a priori, which is different from all existing adaptive NN backstepping control methods where the closed-loop systems can just be ensured to be semi-globally stable and the ultimate tracking accuracy cannot be determined a priori by the designers before the controllers are implemented. Thirdly, the main technical novelty is to construct three new nth-order continuously differentiable switching functions such that multiswitching-based adaptive neural backstepping controllers are designed successfully. Fourthly, in contrast to the classic adaptive NN control schemes, this paper adopts Barbalat׳s lemma to analyze the convergence of tracking errors rather than Lyapunov stability theory. Consequently, the accuracy of ultimate tracking errors can be determined and adjusted accurately a priori according to the real-world requirements, and all signals in the closed-loop systems are also ensured to be uniformly ultimately bounded. Finally, a simulation example is provided to illustrate the effectiveness and merits of the two proposed adaptive NN control schemes.  相似文献   

13.
In this work, we developed a novel active fault-tolerant control (FTC) design scheme for a class of nonlinear dynamic systems subjected simultaneously to modelling imperfections, parametric uncertainties and sensor faults. Modelling imperfections and parametric uncertainties are dealt with using an adaptive radial basis function neural network (RBFNN) that estimates the uncertain part of the system dynamics. For sensor fault estimation (FE), a nonlinear observer based on the estimated dynamics is designed. A scheme to estimate sensor faults in real-time using the nonlinear observer and an additional RBFNN is developed. The convergence properties of the RBFNN, used in the fault FE part, are improved by using a sliding surface function. For FTC design, a sliding surface is designed that incorporates the real-time sensor FE. The resulting sliding mode control (SMC) technique-based FTC law uses the estimated dynamics and real-time sensor FE. A double power-reaching law is adopted to design the switching part of the control law to improve the convergence and mitigate the chattering associated with the SMC. The FTC works well in the presence and absence of sensor faults without the requirement for controller reconfiguration. The stability of the proposed active FTC law is proved using the Lyapunov method. The developed scheme is implemented on a nonlinear simulation of an unmanned aerial vehicle (UAV). The results show good performance of the proposed unified FE and the FTC framework.  相似文献   

14.
In this paper, the consensus control problem of Takagi-Sugeno (T-S) fuzzy multiagent systems (MASs) is investigated by using an observer based distributed adaptive sliding mode control. A distributed nonfragile observer is put forward to estimate the unmeasured state of agents. Based on such an observer, a novel distributed integral sliding surface is designed to suppress the disturbance and uncertainty of T-S fuzzy MASs. In order to achieve the consensus objective, a nominal distributed protocol and an adaptive sliding mode controller are separately designed. Futhermore, the nominal distributed protocol solves the consensus control problem of T-S fuzzy MASs in the absence of disturbance and uncertainty by using the information of adjacent agents obtained by the observer, while the adaptive sliding mode controller suppresses the disturbance and uncertainty. Finally, the proposed method is applied to two examples. Example 1 verifies the superiority of the method by comparing with the fuzzy-based dynamic sliding mode controller. Example 2 is used to illustrate that our control scheme can effectively solve the consensus control problem of T-S fuzzy MASs.  相似文献   

15.
This paper proposes a novel approach to the design of reaching law based on Sliding Mode Controller (SMC) for multi input multi output (MIMO) non-linear systems so as to overcome the drawbacks associated with conventional reaching law based SMC design strategies. The modification is proposed with an aim to completely eliminate chattering, to ensure control inputs within admissible limits and to guarantee fast response when SMC is used. Modification to conventional power rate reaching law is the point of interest here in order to ensure complete elimination of chattering. Two different modifications to power rate reaching law are presented which incorporate control constraints during controller design so that admissible control input limits are not exceeded. The first modified method ensures limited control effort as well as complete chattering free response, but does not improve the reaching characteristics. So a second adaptive modification to power rate reaching law is also presented here. This method ensures fast reaching to the sliding surface along with properties of complete elimination of chattering and bounded control inputs. However, as in power rate reaching law these modified methods retain the limitation of not possessing robustness properties. The method is applied to a three degree of freedom robotic arm which is typically a non-linear MIMO system. The ability of the presented method to satisfy attributes, viz., chattering free operation, bounded control inputs and fast response is compared with the performance of various reaching law methods available in the literature. The performance of the proposed method is validated through simulation studies on the robotic arm example.  相似文献   

16.
The design of adaptive observers is a common approach for the joint state and parameter-estimation problem. Nonetheless, there are still some obstacles that have to be solved to improve the design of adaptive observers and extend its implementability to a larger class of systems. First, the separation of the state-estimation and the parameter-estimation requires a relative degree one or zero between some known signal and the parameters to be estimated. Second, standard stability proofs for adaptive observers cannot be easily extended to consider the unavoidable presence of sensor noise and unmodeled system uncertainty. Consequently, on the one hand, this work proposed a methodology to relax the relative degree condition through the use of a high-gain observer that will be coupled with the adaptive observer. On the other hand, the stability and performance of the proposed observer scheme will be analyzed by the use of a strict Lyapunov function based on the Mazenc construction, which allows to have provable convergence and to study the effect of sensor noise and model uncertainty through common Lyapunov theory. Finally, the proposed approach is validated in a compartmental epidemiology model.  相似文献   

17.
In this study, an adaptive fractional order sliding mode controller with a neural estimator is proposed for a class of systems with nonlinear disturbances. Compared with traditional sliding mode controller, the new proposed fractional order sliding mode controller contains a fractional order term in the sliding surface. The fractional order sliding surface is used in adaptive laws which are derived in the framework of Lyapunov stability theory. The bound of the disturbances is estimated by a radial basis function neural network to relax the requirement of disturbance bound. To investigate the effectiveness of the proposed adaptive neural fractional order sliding mode controller, the methodology is applied to a Z-axis Micro-Electro-Mechanical System (MEMS) gyroscope to control the vibrating dynamics of the proof mass. Simulation results demonstrate that the proposed control system can improve tracking performance as well as parameter identification performance.  相似文献   

18.
The tracking problem of high-order nonlinear multi-agent systems (MAS) with uncertainty is solved by designing adaptive sliding mode control. During the tracking process, node failures are possible to occur, a new agent replaces the failed one. Firstly, a distributed nonsingular terminal sliding mode(NTSM) control scheme is designed for the tracking agents. A novel continuous function is designed in the NTSM to eliminate the singularity and meanwhile guarantee the estimation of finite convergence time. Secondly, the unknown uncertainties in the tracking agents are compensated by proposing an adaptive mechanism in the NTSM. The adaptive mechanism adjusts the control input through estimating the derivative bound of the unknown uncertainties dynamically. Thirdly, the tracking problem with node failures and agent replacements is further investigated. Based on the constructed impulsive-dependent Lyapunov function, it is proved that the overall system will track the target in finite time even with increase of jump errors. Finally, comparison simulations are conducted to illustrate the effectiveness of proposed adaptive nonsingular terminal sliding mode control method for tracking systems suffering node failures.  相似文献   

19.
Sliding mode control (SMC) is among the popular approaches for control of systems, especially for unknown nonlinear systems. However, the chattering in SMC is generally a problem that needs to be resolved for better control. A time-varying method is proposed for determining the sliding gain function in the SMC. Two alternative tuning algorithms are proposed for reducing the sliding gain function for systems. The first algorithm is for systems with no noise and disturbance but with or without unmodeled dynamics. The second algorithm is for systems with noise, disturbance, unmodeled dynamics, or any combination of them. Compared with the state-dependent, equivalent-control-dependent, and hysteresis loop methods, the proposed algorithms are more straightforward and easy to implement. The performance of the algorithms is evaluated for five different cases. A 90% to 95% reduction of chattering is achieved for the first algorithm used for systems with sensor dynamics only. By using the second algorithm, the chattering is reduced by 70% to 90% for systems with noise and/or disturbance, and by 25% to 50% for systems with a combination of disturbance, noise, and unmodeled dynamics.  相似文献   

20.
The finite-time stochastic boundedness (FTSB) via the sliding mode control (SMC) approach is analyzed for Markovian jumping systems (MJSs) with time-delays. First, an integral switching surface is constructed. And to make sure the reachability of the sliding mode surface in a finite-time, an SMC law is designed. In addition, the delay-dependent criteria for FTSB are obtained over the reaching phase and the sliding motion phase. Furthermore, in line with linear matrix inequalities (LMIs), sufficient conditions are provided to guarantee the FTSB of systems over the whole finite-time interval. Lastly, an example is given to indicate the validity of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号