首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This paper is concerned with a passive network synthesis problem about the damper-spring-inerter realization of a bicubic admittance containing a pole at s=0 with at most five elements, where the least number of elements for the possible realizations is four. The admittances of many passive mechanisms (controllers) in inerter-based control systems are in this form. A specific four-element realizability that is a parallel connection of a spring and a three-element subnetwork is first solved. By utilizing the realizability constraints based on graph theory, it is proved that only one configuration can cover all the other four-element cases through the discussions of other possible network graphs. By deriving its realizability condition, a necessary and sufficient condition for the four-element realizations can be combined. More generally, the five-element realizability can be investigated. The specific five-element realizability that is the parallel connection of a spring and a four-element subnetwork is solved. By making use of realizability constraints described by network graphs and eliminating impossible configurations, a set of four configurations is found out to cover all the other five-element cases. By investigating their realizability conditions, a necessary and sufficient condition for the five-element realizations can be combined. The results of this paper can reduce the realizability redundancy compared with classical synthesis approaches like Bott–Duffin procedure, which provide a first critical step towards solving the minimal realization problem of such admittances. The results can be applied to the design and optimization of mechanical control systems based on inerters, and in the long term can also contribute to the development of other areas of circuits and systems.  相似文献   

2.
This paper mainly investigates the passive realization problems of bicubic (third-order) impedances as damper-spring-inerter networks consisting of no more than five elements. First, the special case where a bicubic impedance contains a pole or a zero on the imaginary axis or at infinity is discussed. Then, assuming that there is no pole or zero on the imaginary axis or at infinity, the realizations of bicubic impedances as five-element networks are investigated. Necessary and sufficient conditions for the realizability as five-element series-parallel networks and as five-element non-series-parallel networks are derived, respectively, where 22 series-parallel configurations and 11 non-series-parallel configurations are presented to cover the conditions. Finally, two numerical examples together with positive-real controller designs for a quarter-car suspension system are presented for illustrations. The results of this paper can contribute to the synthesis of low-complexity passive mechanical (or electrical) networks, which are motivated by the synthesis and design of inerter-based vibration control systems.  相似文献   

3.
Boolean control networks are a kind of discrete logical dynamical systems. They are recently attracting considerable interest as computational models for genetic and cellular networks. In this paper, we investigate the cascading state-space decomposition problem for Boolean control networks by nested method. Firstly, based on the semi-tensor product of matrices, we obtain some algebraic conditions for the cascading state-space decomposition. Secondly, the multi-layer nested block matrix is defined, and two necessary and sufficient conditions are put forward based on this kind of matrices. Besides, a method is given to design controllers. Finally, an example is given to display the effectiveness of the method provided in this paper.  相似文献   

4.
《Journal of The Franklin Institute》2022,359(18):10765-10784
In most of existing literature, it is assumed that all of the sensors can work normally. However in some situations, several sensors occur abnormal behavior or stuck at faults such that prior diagnosable decisions may not hold. By this regard, we address the problem of robustly distributed failure diagnosis of discrete-event systems with observation losses in this paper. In order to ensure diagnosability, the notion of robustly diagnosability is proposed in the distributed framework. Motivated by earlier works, new communication models and dilation operators are constructed, based on which the robustly distributed diagnosis problem is converted to a distributed diagnosis problem. One algorithm for the verification of robustly distributed diagnosis is proposed. Followed by it, a necessary and sufficient condition for the robustly diagnosability is presented. Finally, a part of Alipay transaction systems as an application is used to illustrate the construction of some automata and the verification algorithm.  相似文献   

5.
Using the algebraic state space representation (ASSR) method, this paper investigates the set stability and synchronization of Boolean networks with probabilistic time delays (PTDs). Firstly, an equivalent stochastic system is established for the Boolean network with PTDs by using the ASSR method. Secondly, based on the probabilistic state transition matrix of equivalent stochastic system, a necessary and sufficient condition is proposed for the set stability of Boolean networks with PTDs. Thirdly, as an application of set stability, the synchronization of coupled Boolean networks with PTDs is studied, and a necessary and sufficient condition is presented. Finally, an illustrative example is given to demonstrate the effectiveness of the obtained new results.  相似文献   

6.
This paper studies the stabilization problem of Boolean control networks with stochastic impulses, where stochastic impulses model is described as a series of possible regulatory models with corresponding probabilities. The stochastic impulses model makes the research more realistic. The global stabilization problem is trying to drive all states to reach the predefined target with probability 1. A necessary and sufficient condition is presented to judge whether a given system is globally stabilizable. Meanwhile, an algorithm is proposed to stabilize the given system by designing a state feedback controller and different impulses strategies. As an extension, these results are applied to analyze the global stabilization to a fixed state of probability Boolean control networks with stochastic impulses. Finally, two examples are given to demonstrate the effectiveness of the obtained results.  相似文献   

7.
This paper is concerned with the stabilization problem of singular fractional order systems with order α?∈?(0, 2). In addition to the sufficient and necessary condition for observer based control, a sufficient and necessary condition for output feedback control is proposed by adopting matrix variable decoupling technique. The developed results are more general and efficient than the existing works, especially for the output feedback case. Finally, two illustrative examples are given to verify the effectiveness and potential of the proposed approaches.  相似文献   

8.
In this paper, the optimal synchronization controller design problem for complex dynamical networks with unknown system internal dynamics is studied. A necessary and sufficient condition on the existence of the optimal control minimizing a quadratic performance index is given. The optimal control law consists of a feedback control and a compensated feedforward control, and the feedback control gain can be obtained by solving the well-known Algebraic Riccati Equation (ARE). Especially, in the presence of unknown system dynamics, a novel adaptive iterative algorithm using the information of system states and inputs is proposed to solve the ARE to get the optimal feedback control gain. Finally, a simulation example shows the effectiveness of the theoretical results.  相似文献   

9.
This paper studies the optimal finite-time passive control problem for a class of uncertain nonlinear Markovian jumping systems (MJSs). The Takagi and Sugeno (T–S) fuzzy model is employed to represent the nonlinear system with Markovian jump parameters and norm-bounded uncertainties. By selecting an appropriate Lyapunov-Krasovskii functional, it gives a sufficient condition for the existence of finite-time passive controller such that the uncertain nonlinear MJSs is stochastically finite-time bounded for all admissible uncertainties and satisfies the given passive control index in a finite time-interval. The sufficient condition on the existence of optimal finite-time fuzzy passive controller is formulated in the form of linear matrix inequalities and the designed algorithm is described as an optimization one. A numerical example is given at last to illustrate the effectiveness of the proposed design approach.  相似文献   

10.
In this paper, we intend to discuss the passivity of coupled neural networks (NNs) with reaction–diffusion terms and mixed delays. By constructing appropriate Lyapunov functional, and with the help of liner matrix inequalities, some inequality techniques, several sufficient conditions are derived to guarantee the output strictly passive, input strictly passive, passive of the proposed neural network model. Then, a stability criterion is presented according to the obtained passivity results. Moreover, the proposed neural network model herein is more general than some recent studies, which can improve and enrich the previous research results. Finally, a numerical example is presented to show the effectiveness of the theoretical criteria.  相似文献   

11.
This paper investigates steady-state distributions of probabilistic Boolean networks via cascading aggregation. Under this approach, the problem is converted to computing least square solutions to several corresponding equations. Two necessary and sufficient conditions for the existence of the steady-state distributions for probabilistic Boolean networks are given firstly. Secondly, an algorithm for finding the steady-state distributions of probabilistic probabilistic Boolean networks is given. Finally, a numerical example is given to show the effectiveness of the proposed method.  相似文献   

12.
In this paper necessary and sufficient conditions are derived for a two-variable positive real function to be the driving-point impedance of certain classes of doubly-terminated lossless ladder networks. Specifically, two classes of networks are studied: (a) the class of networks in which the lossless structure is a cascade of p1- and p2-variable two-ports, each two-port having its transmission zeros at the origin and/or at infinity; (b) the class of networks in which the lossless structure is a lowpass or highpass ladder network with series arms having p1- and p2-type elements in series and shunt arms having the p1- and p2-type elements in parallel. It is indicated that via suitable transformations of the variables, conditions for many other types of ladder structures can be derived.  相似文献   

13.
《Journal of The Franklin Institute》2019,356(18):11285-11304
In this paper, the problem of exponential synchronization for inertial Cohen–Grossberg neural networks with time delays is studied. According to the concept of synchronization, a controlled response system is constructed to obtain the error systems. First, by introducing a directive Lyapunov functional, a sufficient condition is derived to ascertain the exponential synchronization of the drive and response systems based on feedback control. Moreover, by introducing a variable substitution, a sufficient condition is obtained to ensure the global exponential synchronization for the systems. Two sufficient conditions are feasible for the global exponential synchronization of the drive and response systems, and complement each other. Finally, the parameters were set for numerical simulation, two illustrative examples are provided to show the effectiveness of the obtained theoretical results, and the validity of the model was proved.  相似文献   

14.
In this paper, we investigate the static output-feedback stabilization problem for LTI positive systems with a time-varying delay in the state and output vectors. By exploiting the induced monotonicity, necessary and sufficient conditions ensuring exponential stability of the closed-loop system are first quoted. Based on the derived stability conditions, necessary and sufficient stabilization conditions are formulated in terms of matrix inequalities. This general setting is then transformed into suitable vertex optimization problems by which necessary and sufficient conditions for the existence of a desired static output-feedback controller are obtained. The proposed synthesis conditions are presented in the form of linear programming conditions, which can be effectively solved by various convex algorithms.  相似文献   

15.
This paper addresses an active fault diagnosis problem for a class of discrete-time closed-loop system with stochastic noise. By introducing the theories of system identification, a novel active fault diagnosis method is developed to detect and isolate the faults. An important advantage of the proposed method is that there is no need to cut off the original input signal, which is necessary in most active fault diagnosis methods. Firstly, due to the features of the faults, we transform the problem of fault diagnosis into a problem of model selection by estimating model parameters. Then, the sufficient condition for active fault diagnosability is analysed, and the property that auxiliary input signal can enhance the fault diagnosability is given. Finally, simulation studies are carried out to demonstrate the effectiveness and applicability of the proposed method.  相似文献   

16.
In this paper, we propose the design and analysis of a reservation-based protocol for synchronous WDM multi-channel optical networks. The network architecture is based on a passive star topology and a new architecture for the network interface per station. The main objective of the scheduling algorithm and network interface is to maximize the performance measures by studying the problem of receiver collision phenomena at destination that multichannel nature of WDM networks introduces. We develop an analytical model based on a finite number of tunable receivers and a finite number of stations, following the “tell and go” policy for the access to communication system. Numerical results are showing the performance behavior for various number of channels, stations, and tunable receivers. Also, simulation results are presented for comparison with the results obtained by the performance analysis.  相似文献   

17.
In this paper, we study the state feedback stabilization of dynamic-algebraic Boolean control networks (DABCNs). Using a novel normalization approach, we present necessary and sufficient conditions for the feedback stabilization of DABCNs, and a construction method for the corresponding feedback controllers is proposed. Reduced order feedback stabilization is also studied in this paper. Two examples are given to illustrate the obtained results.  相似文献   

18.
This paper investigates the consensus problem for third-order discrete-time multi-agent systems in directed networks. For the case when each agent can only receive the information of position and velocity from its neighbors, necessary and sufficient conditions for consensus have been proposed. In contrast to the preceding work, we not only present the exact consensus value, but also illustrate the influence of scaling parameters and nonzero eigenvalues of the involved Laplacian matrix on consensus. Two numerical examples are given to demonstrate the effectiveness of the obtained results.  相似文献   

19.
This paper investigates the optimal control problem for a class of Boolean control networks, called singular Boolean control networks (SBCNs), which consist of two parts: difference equations and algebraic equations. By constructing the truth matrix of Ledley solution, necessary and sufficient conditions are provided for the solvability of SBNs (or SBCNs). Then an effective algorithm is presented to design an optimal control sequence by using the controllability matrix of normalized Boolean control networks.  相似文献   

20.
In this paper, we study the generalized cluster synchronization problem for the Boolean control networks (BCNs) with delays in both the states and the inputs. First, by using the method of semi-tensor product of matrices, the original network is transformed into an equivalent extended system. Next, based on the updated iterative equation of the system, two types of generalized cluster synchronization are investigated: 1) generalized internal cluster synchronization within the BCN, and 2) generalized cluster synchronization between the BCN and the target reference network. Some necessary and sufficient conditions are proposed guaranteeing the realization of the generalized cluster synchronization. What is more, the gain matrices of the state-feedback controllers are explicitly designed. Numerical simulations are also given to illustrate effectiveness of the theoretical results obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号