首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
This paper addresses the filtering problem for the one-sided Lipschitz nonlinear systems under measurement delays and disturbances using a generalized observer. A generalized architecture for filtering of the one-sided Lipschitz nonlinear systems with output delays is explored, which exhibits diverging manifolds, namely, the conventional static-gain filter and the dynamical filter, and can be employed to render robust stability of the filtering error dynamics. A matrix inequality based framework is obtained by employing a Lyapunov?Krasovskii (LK) functional, whose derivative is exploited through Jensen's inequality, one-sided Lipschitz condition, quadratic inner-boundedness inequality and range of the measurement delay, resulting into L2 stability for the filtering error system. Generalized filter design for the Lipschitz nonlinear systems with delayed outputs and specific results for the delay-dependent and delay-rate-independent filtering schemes for the one-sided Lipschitz nonlinear systems are deduced from the proposed approach. Convex optimization techniques are employed to achieve a solution for the nonlinear constraints through linear matrix inequalities by employing cone complementary linearization approach. Illustrative numerical examples to demonstrate the effectiveness of proposed method are provided.  相似文献   

2.
This paper presents the central finite-dimensional H filter for nonlinear polynomial systems with multiplicative noise, that is suboptimal for a given threshold γ with respect to a modified Bolza-Meyer quadratic criterion including the attenuation control term with the opposite sign. In contrast to the previously obtained results, the paper reduces the original H filtering problem to the corresponding optimal H2 filtering problem, using the technique proposed in [1]. The paper presents the central suboptimal H filter for the general case of nonlinear polynomial systems with multiplicative noise, based on the optimal H2 filter given in [31]. The central suboptimal H filter is also derived in a closed finite-dimensional form for third (and less) degree polynomial system states. Numerical simulations are conducted to verify performance of the designed central suboptimal filter for nonlinear polynomial systems against the central suboptimal H filters available for polynomial systems with state-independent noise and the corresponding linearized system.  相似文献   

3.
A novel H filter design methodology has been presented for a general class of nonlinear systems. Different from existing nonlinear filtering design, the nonlinearities are approximated using neural networks, and then are modeled based on linear difference inclusions, which makes the structure of the desired filter simpler and parameter turning easier and has the advantages of guaranteed stability, numeral robustness, bounded estimation accuracy. A unified framework is established to solve the addressed H filtering problem by exploiting linear matrix inequality (LMI) approach. A numerical example shows that the filtering error systems will work well against bounded error between a nonlinear dynamical system and a multilayer neural network.  相似文献   

4.
5.
This paper focuses on the filtering problem for nonlinear networked systems with event-triggered data transmission and correlated noises. An event-triggered data transmission mechanism is introduced to reduce excessive measurements transmitted over a bandwidth-constrained network. Considering that process noise and measurement noise are one-step cross-correlated, an UKF-based filtering algorithm which depends on correlation parameter and trigger threshold is presented. Then sufficient conditions are established to ensure stability of the designed filter, where a critical value of the correlation parameter exists. Finally, the effectiveness of the proposed filtering algorithm is demonstrated by comparative simulations.  相似文献   

6.
In this paper, a novel distributed Kalman filter consisting of a bank of interlaced filters is proposed for a signal model whose dynamic equation and measurement equation are coupled. Each of the interlaced filters estimates a part of state rather than the global state using its and its neighbor information, which is different from other distributed filters already existed (e.g., distributed Kalman filter based on diffusion strategy or consensus strategy, distributed fuzzy filter and distributed particle filter with Gaussian mixer approximation, etc). This relieves the calculation and communication burden in networks. In addition, the proposed distributed Kalman filtering contains no consensus strategies, which is useful in some cases since consensus usually requires an infinite number of iterations.  相似文献   

7.
The desensitized Kalman filter Karlgaard and Shen (2013)[1] is a practical and intuitive robust filtering method. However, a thorough analysis of its stability and impact of assumptions is missing. This paper expands the theory of desensitized Kalman filtering by proposing a stochastic approach to reduce estimation error sensitivity to parameters. The novel approach leads to the exact desensitized Kalman filter that does not neglect the gain sensitivity to a parameter. The suboptimal form equivalent to the original desensitized Kalman filter in a special form is proposed. The stability analysis and the definition of stability conditions are possible due to the proposed form that can be interpreted as the Kalman filter with correlated process and measurement noise with time-variant statistics. Furthermore, adaptive normalization of objectives is introduced, which improves the desensitizing performance.  相似文献   

8.
The Kalman filtering algorithm is used to identify a class of signals imbedded in high amplitude measurement noise. The considered class of signals is first modeled empirically as a nonlinear equation. The equation is then linearized and formulated as a Kalman filtering state estimation problem. Computer simulations yield excellent results for a variety of examples, a couple of which are presented in this paper.  相似文献   

9.
In this paper, the centralized security-guaranteed filtering problem is studied for linear time-invariant stochastic systems with multirate-sensor fusion under deception attacks. The underlying system includes a number of sensor nodes with a centralized filter, where each sensor is allowed to be sampled at different rate. A new measurement output model is proposed to characterize both the multiple rates and the deception attacks. By exploiting the lifting technique, the multi-rate sensor system is cast into a single-rate discrete-time system. With a new concept of security level, the aim of this paper is to design a filter such that the filtering error dynamics achieves the prescribed level of the security under deception attacks. By using the stochastic analysis techniques, sufficient conditions are first derived such that the filtering error system is guaranteed to have the desired security level, and then the filter gain is parameterized by using the semi-definite programme method with certain nonlinear constraints. Finally, a numerical simulation example is provided to demonstrate the feasibility of the proposed filtering scheme.  相似文献   

10.
This paper considers the identification problem of bilinear systems with measurement noise in the form of the moving average model. In particular, we present an interactive estimation algorithm for unmeasurable states and parameters based on the hierarchical identification principle. For unknown states, we formulate a novel bilinear state observer from input-output measurements using the Kalman filter. Then a bilinear state observer based multi-innovation extended stochastic gradient (BSO-MI-ESG) algorithm is proposed to estimate the unknown system parameters. A linear filter is utilized to improve the parameter estimation accuracy and a filtering based BSO-MI-ESG algorithm is presented using the data filtering technique. In the numerical example, we illustrate the effectiveness of the proposed identification methods.  相似文献   

11.
In this paper, a command filter based dynamic surface control (DSC) is developed for stochastic nonlinear systems with input delay, stochastic unmodeled dynamics and full state constraints. An error compensation system is designed to constrain the filtering error caused by the first-order filter in the traditional dynamic surface design. On this basis, the stability proof of DSC for stochastic nonlinear systems based on command filter is proposed. The definition of state constraints in probability is presented, and the problem of stochastic full state constraints is solved by constructing a group of coordinate transformations with nonlinear mappings. The Pade approximation is adopted to deal with input delay. The stochastic unmodeled dynamics is considered, which is processed by utilizing the property of stochastic input-to-state stability (SISS) and changing supply function. All the signals of the system are proved to be semi-globally uniformly ultimately bounded (SGUUB) in probability, and the full state constraints are not violated. The two simulation examples also verify the effectiveness of the proposed adaptive DSC scheme.  相似文献   

12.
This paper investigates the problem of event-triggered filter design for nonlinear networked control systems (NCSs) in the framework of interval type-2 (IT2) fuzzy systems. A novel IT2 fuzzy filter for ensuring asymptotic stability and H performance of filtering error system is proposed, where the premise variables are different from those of the fuzzy model. Attention is focused on solving the problem of event-triggered filter design subject to parameter uncertainties, data quantization, and communication delay in a unified frame. It is shown that the proposed event-triggered filter design communication mechanism for IT2 fuzzy NCSs has the advantage of the existing event-triggered approaches to reduce the utilization of limited network resources and provides flexibility in balancing the tracking error and the utilization of network resources. Finally, simulation example is given to validate the advantages of the presented results.  相似文献   

13.
In this paper, the problem of H filtering for neutral systems with mixed time-varying delays and nonlinear perturbations is investigated. Some new delay-dependent sufficient conditions are presented to ensure that the filtering error system is asymptotically stable with a prescribed level of H noise attenuation. In addition, the design procedures for the existence of such filter are presented in terms of a set of linear matrix inequalities (LMIs). Slack variables and convex combination technique are adopted to reduce the conservatism of obtained results. Finally, three numerical examples are given to illustrate the effectiveness of the proposed method.  相似文献   

14.
This article investigates the adaptive neural network fixed-time tracking control issue for a class of strict-feedback nonlinear systems with prescribed performance demands, in which the radial basis function neural networks (RBFNNs) are utilized to approximate the unknown items. First, an modified fractional-order command filtered backstepping (FOCFB) control technique is incorporated to address the issue of the iterative derivation and remove the impact of filtering errors, where a fractional-order filter is adopted to improve the filter performance. Furthermore, an event-driven-based fixed-time adaptive controller is constructed to reduce the communication burden while excluding the Zeno-behavior. Stability results prove that the designed controller not only guarantees all the signals of the closed-loop system (CLS) are practically fixed-time bounded, but also the tracking error can be regulated to the predefined boundary. Finally, the feasibility and superiority of the proposed control algorithm are verified by two simulation examples.  相似文献   

15.
《Journal of The Franklin Institute》2019,356(17):10335-10354
This paper is devoted to investigate the designs of the event-based distributed state estimation and fault detection of the nonlinear stochastic systems over wireless sensor networks (WSNs). The nonlinear stochastic systems as well as the filters corresponding to the multiple sensors are represented by interval type-2 Takagi–Sugeno (T–S) fuzzy models. (1) A new type of fuzzy distributed filters based on event-triggered mechanism is established corresponding to the nodes of the WSN. (2) The overall stability and performance, that is mean-square asymptotic stability in H sense, of the event-driven fault detection system is analyzed based on Lyapunov stability theory. (3) New techniques are developed to cope with the problem of parametric matrix decoupling for solving the distributed filter gains. (4) Finally, the desired event-based distributed filter matrices are designed subject to the numbers of the fuzzy rules and a series of matrix inequalities. A simulation case is detailed to show the effectiveness of the presented event-based distributed fault detection filtering scheme.  相似文献   

16.
In this paper, the event-triggered non-fragile H fault detection filter is designed for a class of discrete-time nonlinear systems subject to time-varying delays and channel fadings. The Lth Rice fading model is utilized to reflect the actual received measurement signals, and its channel coefficients own arbitrary probability density functions on interval [0,1]. The event-based filter is constructed to reduce unnecessary data transmissions in the communication channel, which only updates the measurement signal to the filter when the prespecified “event” is triggered. Multiplicative gain variations are utilized to describe the phenomenon of parameter variations in actual implementation of the filter. Based on Lyapunov stability theory, stochastic analysis technology along with linear matrix inequalities (LMIs) skills, sufficient conditions for the existence of the non-fragile fault detection filter are obtained which make the filtering error system stochastically stable and satisfy the H constraint. The gains of the filter can be calculated out by solving the feasible solution to a certain LMI. A simulation example is given to show the effectiveness of the proposed method.  相似文献   

17.
This paper presents solution of the optimal linear-quadratic controller problem for unobservable integral Volterra systems with continuous/discontinuous states under deterministic uncertainties, over continuous/discontinuous observations. Due to the separation principle for integral systems, the initial continuous problem is split into the optimal minmax filtering problem for integral Volterra systems with deterministic uncertainties over continuous/discontinuous observations and the optimal linear-quadratic control (regulator) problem for observable deterministic integral Volterra systems with continuous/discontinuous states. As a result, the system of the optimal controller equations are obtained, including the linear equation for the optimally controlled minmax estimate and two Riccati equations for its ellipsoid matrix (optimal gain matrix of the filter) and the optimal regulator gain matrix. Then, in the discontinuous problems, the equation for the optimal controller and the equations for the optimal filter and regulator gain matrices are obtained using the filtering procedure for deriving the filtering equations over discontinuous observations proceeding from the known filtering equations over continuous ones and the dual results in the optimal control problem for integral systems. The technical example illustrating application of the obtained results is finally given.  相似文献   

18.
In this paper, the state estimation problem is studied for a class of discrete-time stochastic complex networks with switched topology. In the network under consideration, we assume that measurement outputs can be got from only partial nodes, besides, the switching rule of this network is characterized by a sequence of Bernoulli random variables. The aim of the presented estimation problem is to develop a recursive estimator based on the framework of extended Kalman filter (EKF), such that the upper bound for the filtering error convariance is optimized. In order to address the nonlinear functions, the Taylor series expansion is utilized and the high-order terms of linearization errors are expressed in an exact way. Furthermore, by solving two Ricatti-like difference equations, the gain matrix can be acquired at each time instant. It is shown that the filtering error is bounded in mean square under some conditions with the aid of stochastic analysis techniques. A numerical example is given to demonstrate the validity of the proposed estimator.  相似文献   

19.
This paper develops an Aitken based modified Kalman filtering stochastic gradient algorithm for dual-rate nonlinear models. The Aitken based method can increase the convergence rate and the modified Kalman filter can improve the estimation accuracy. Thus compared to the traditional auxiliary model based stochastic gradient algorithm, the proposed algorithm in this paper is more effective, and this is proved by the convergence analysis. Furthermore, two simulated examples are given to illustrate the effectiveness of the proposed algorithm.  相似文献   

20.
This paper addresses the positive filter design problem for a class of continuous-discrete Roesser model in Takagi-Sugeno fuzzy form. Both the observer-based and the general form of filters are designed with l1 performance constraint. By utilizing the co-positive Lyapunov function approach, sufficient criteria are derived in the form of linear programming, which not only guarantee the existence of the positive lower-bounding/upper-bounding filters but also assure the resulting filtering error system to be asymptotically stable and having a prescribed l1-gain performance index. In addition, the explicit design schemes for the corresponding filter parameters are also presented. Finally, two numerical examples are provided to illustrate effectiveness of the proposed results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号