首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
文[1]-[4]研究了如下几个有意思的不等式: 问题1:已知a,b,c为正实数,求证:(a2+ b2)2≥(a+b+c)(a+b-c)(b+c-a)(c+a-b) 问题2:已知a,b,c为正实数,求证:(ab)2≥1/4(a+b+c)(a+ b-c)(b+c-a)(c+a-b) 问题3:若a,b,c为正实数,且满足a+b+c=3,求证:(3/a-2)(3/b-2)(3/c-2)≤1.  相似文献   

2.
正引言文[1]—[4]研究了如下几个有意思的不等式:问题1已知a,b,c为正实数,求证:(a2+b2)2≥(a+b+c)(a+b-c)(b+c-a)(c+a-b).问题2已知a,b,c为正实数,求证:(ab)2≥1/4(a+b+c)(a+b-c)(b+c-a))c+a-b).问题3若a,b,c为正实数,且满足a+b+c=3,求证:(3/a-2)(3/b-2)(3/c-2)≤1.  相似文献   

3.
我们知道,对于任意两个正实数a、b恒有不等式:a~(a-b)≥b~(a-b)(※)成立。本文利用这一不等式给出几个难度较大的不等式的简洁证明。例1 已知a、b、c∈R~+,求证: a~(2a)b~(2b)c~(2c)≥a~(b+c)·b~(a+c)·c~(a+b)(1978年上海市中学数学竞赛试题) 证明由(※)得 a~(a-b)≥b~(a-b),b~(b-a)≥c~(b-c),c~(c-a)≥a~(c-a)。以上不等式两边分别相乘得 a~(a-b)·b~(b-c)·c~(c-a)≥b~(a-b)·c~(b-c)·a~(c-a)。整理得:a~(2a)·b~(2b)·c~(2c)≥a~(b+c)·b~(a+c)·c~(a+b) 例2 设a、b、c∈R~+.求证: a~ab~bc~c≥(abc)(a+b+c)/3(1974年美国第三届奥林匹克竞赛试题)。证明由例1知  相似文献   

4.
《数学通讯》1984年第5期给出了1983年瑞士奥林匹克数学竞赛试题及解答,其中第二题是: 设a、B、c为正数,试证明: abc≥(b+c-a)(c+a-b)(a+b-c) (1) 文中应用三角形边及角的三角函数关系给出它的  相似文献   

5.
不等式a b≥2(ab)~(1/2)是中学数学中一个用得很广的基本不等式,但在应用中常见一些错误,现举几例. 一、忽视了a b≥2(ab)~(1/2)成立条件而导致的错误例1 设a、b、c为正数,求证(a b c)~3≥27(a b-c)(b c-a)(c a-b) 错误证法: ∵a b c=(a b-c) (b c-a) (c a-b)>0 ∴(a b-c) (b c-a) (c a-b)≥3((a b-c)(b c-a)(c a-b))~(1/2) 即(a b c)~3≥27(a b-c)(b c-a)(c a-b) 分析:虽a>0,b>0,c>0,但a b-c,b c-a,c a-b不一定都大于0,而x y z≥3(xyz)~(1/2)的中x、y、z必须都大于0.  相似文献   

6.
文[1]给出问题“设a,b,c是ΔABC的三边,求证:a2/b+c-a+b2/c+a-b+c2/a+b-c≥a+b+c.”的两种证法.  相似文献   

7.
设a、b、c∈R ,求证: a~3 b~3 c~3≥3abc a(b-c)~2 b(C-a)~2 c(a-b)~2。 这个不等式是著名不等式a~3 b~3 c~3≥3abc的一个加强,在中学数学杂志上曾引起了一些讨论。它的等价形式曾作为瑞典1983年的竞赛试题:若a、b、c∈R~ ,求证:abc≥(-a b c)(a-b C)(a b-c) (1) 联想到(1)的右端与海伦公式的相似之处,本文将(1)进一步加强为:  相似文献   

8.
一、变形类例1已知14(b-c)2=(a-b)(c-a)且a≠0,则b a c=.解:由已知变形,得(b-c)2=4(a-b)(c-a).∴[(a-b) (c-a)]2=4(a-b)(c-a).∴(a-b)2 2(a-b)(c-a) (c-a)2=4(a-b)(c-a),即[(a-b)-(c-a)]2=0.∴a-b=c-a,即b c=2a.又a≠0,故b ca=2.说明:若直接去括号,然后整理、变形、计算,这样不  相似文献   

9.
另证一个不等式的再推广   总被引:1,自引:0,他引:1  
文[1]对人教版教材高中数学第二册(上)第30页的一道习题:已知a、b、c〉0,求证:1/a-b+1/b-c+1/c-a〉0,指导学生进行了探究,将这个不等式加强为1/a-b+1/b-c+4/c-a≥0,  相似文献   

10.
将a^3 b^3 c^3-3abc分解因式,有:a^3 b^3 c^3-3abc =(a b c)(a^2 b^2 c^2-ab-bc-ca) =1/2(a b c)[(a-b)^2 (b-c)^2 (c-a)^2]  相似文献   

11.
三角形之外接圆半径与内切圆直径间的关系R≥2r的已有证明比较复杂,本文给出一个较简单的证法,进而解有关问题。为应用方便,有关结论以命题形式出现。命题1 三角形外接圆半径与内切圆半径之积的2倍,等于这个三角形的三边之积与三边之和的比。证明:∵S_△=1/2r(a b c),即2r=4S_△/(a b c)又∵S_△=(abc)/4R,即R=(abc)/4S_△。故2rR=(abc)/(a b c)。命题2 若三角形的三边为a、b、c,则abc≥(a b-c)(a c-b)(b c-a)。证明:∵abc-(a b-c)(a c-b)(b c-a)=abc-(a~2b a~2c b~2a b~2c c~2a c~2b-  相似文献   

12.
定理 对任意实数a、b、c、d有 (a~2 b~2 c~2 d~2)~2 ≥(-a b c d)(a-b c d) ·(a b-c d)(a b c-d),①当且仅当a=b=c=d>0时等号成立.  相似文献   

13.
<正>命题在△ABC中,a、b、c分别为其三边长,R、r分别为其外接圆和内切圆半径,则有a3+b3+c3≥(a+b+c)(ab+bc+ca)-6abc≥4-2r()Rabc≥3abc.证明先证明a3+b3+c3≥(a+b+c)(ab+bc+ca)-6abc.由于a、b、c是三角形的三边长,所以有a+b>c,即a+b-c>0,同理有b+c-a>0,c+a-b  相似文献   

14.
文[1]中给出了下面的不等式:设a≥b≥c>0,则ba cb ac≥13(a b c)(a1 1b 1c).(1)本文先将不等式推广为:命题1设a≥b≥c>0,x≥y>0,则ba cb ac≥yx y(a b c)(1a 1b 1c) 3(xx- y2y).(2)证明a2b b2c c2a-(ab2 bc2 ca2)=(b-c)a2 (c2-b2)a (b2c-bc2)=(b-c)[a2-(b c)a bc]=(b-c)(a-b)(a  相似文献   

15.
文[1]给出了关于三角形三边的Klamkin不等式:a/b+b/c+c/a≥1/3(a+b+c)(1/a+1/b+1/c)(1)的如下一个逆向形式:a/b+b/c+c/a≤1/3(a+b+c)(1/b+c-a+1/c+a-b+1/a+b-c)(2)  相似文献   

16.
1983年瑞士奥林匹克数学竞赛题中有这样一道题: 设a、b、c∈R~ ,求证:abc≥(b c-a)(a c-b)(a b-c) (1) 其证明我们可以在近年来的一些书刊中找到,本文拟通过对这道竞赛题的变通,沟通它与其它一些问题的密切联系。一、设三角形三边长为a、b、c,面积为△,则有abc≥(8/3)3~(1/3)·△~(3/2) (2)  相似文献   

17.
本刊1993年7—8期“贵多思,勤总结”一文,对题目:“已知(c-a)~2-4(a-b)(b-c)=0,求证:2b=a+c”给出了五种解法.作为前文的补充,这里再给出两种解法. 解法1 已知等式可化为(a-b)(b-c)=((c-a)~2)/4.①因为(a-b)+(b-c)=a-c,设a-b=(a-c)/2+t,则  相似文献   

18.
《中学数学教学》2020年第1期上,“有奖解题擂台(127)”刊有以下问题在锐角△ABC中,求证:1cosA+1cosB+1cosC≥1sinA2sinB2sinC2-2.证法1(扬学枝提供)设△ABC边长为BC=a,CA=b,AB=c,由对称性,不妨设a≥b≥c,则原式等价于∑2bc-a2+b2+c2≥8abc∏(-a+b+c)-2∑(2bc-a2+b2+c2+1)≥8abc∏(-a+b+c)+1∑(a+b+c)(-a+b+c)-a2+b2+c2≥-∑a3+∑a(b+c)2∏(-a+b+c)∑(a+b+c)(-a+b+c)-a2+b2+c2≥∑a(a+b+c)(-a+b+c)∏(-a+b+c)∑-a+b+c-a2+b2+c2≥∑a(a-b+c)(a+b-c),由于∑a(a-b+c)(a+b-c)=12∑(1a-b+c+1a+b-c)=∑1-a+b+c.  相似文献   

19.
不等式a2/b c-a b2/c a-b c2/a b-c≥a b c(其中a、b、c为ABC的三边)的证明方法很多,大都技巧性强,本文给出两种基本解法.  相似文献   

20.
文[1]例4给出了不等式:“a~2/(b c-a) b~2/(c a-b) c~2/(a b-c)≥a b c,其中 a,b,c 为△ABC 三边”的证明.它采用逆用等比数列各项和的证明方法,其思路新颖,但证题过程繁琐,不利于学生理解与掌握.本文从柯西不等式着手推导出两个结论,并对文[1]例4给出另一种独特简洁的证法,然后对推论作一简单的运用.在初等数学中常遇到如下不等式:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号