首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
从点P作二次曲线C的两条切线,切点分别是A、B,称线段AB为点P对C的切点弦。本文在建立切点弦(所在直线)方程的基础上,研究有关切点弦的一些性质。一、切点弦方程例1.求椭圆x~2/a~2+y~2/b~2=1外一点P(x_0,y_0)对椭圆的切点弦AB的方程。  相似文献   

2.
从抛物线y~2=2px外一点p(x_0,y_0)、向抛物线引两条切线,切点为A,B,则线段AB称为p点的切点弦、切点弦AB的方程是yy_0=p(x+x_0),证明如下: 设切点A、B坐标分别为A(x_1,y_1),B(x_2,y_2),则PA、PB方程分别为:  相似文献   

3.
F(x.y)=a_(11)x~2+2a_(12)xy+a_(22)y~2+2a_(13)x+2a_(23)y+a_(33)=0 (1)设点P_0(x_0,y_0)为不在曲线(1)的焦点所在区域内的点,因而过P_0可向曲线(1)作二条切线,两个切点分别为P_1(x_1,y_1),P_2(x_2,y_2),称联P_1P_2的直线l为曲线(1)关于P_0的切点弦。本文给出l的一种简易求法。 命题:若P_0(x_0,y_0)为平面上不在曲线(1)的焦点区域内的任一点,则曲线(1)关于P_0的切点弦方程为:  相似文献   

4.
先看一个例题,如图1,⊙O的方程为x~2+y~2=1,A(2,1)为圆外一点,AP,AQ是⊙O的两条切线,P,Q是切点,求切点弦PQ的方程。解:据设,过点P的圆的切线方程为x_1a+y_1y=1(1)∵A(2,1)在切线上,∴2x_1+y_1=1,∴y_1=1-2x_1,同理y_2=1-2x_2。由两点式得切点弦PQ的方程为(x-x_1)/(x_1-x_2)=(y-(1-2x_1))/((1-2x_1)-(1-2x_2))经整理得2x+y=l(2) 方程(2)正好与方程(1)中把P(x_1,y_1)的坐标换成A的坐标。这是巧合吗?不!有如下结论:自圆外一点A(m,n)向圆引两切线,所得切点弦方程与切点为(x_1,y_1)的圆的切线方程中把(x_1,y_1)换成(m,n)的  相似文献   

5.
一阶导数与二次曲线弦中点间存在着一种内在联系,这种联系为解决二次曲线中点弦一类问题开辟了一条较为简捷的路径.本文就以定理形式揭示这种联系并列举应用. 定理:椭圆x~2/a~2 y~2/b~2=1的以斜率为k的一组平行弦中点轨迹方程是x~2/a~2 yy_x~'/b~2=0(※)(|x|≤a,|y|≤b)其中y_x~'就是平行弦的斜率k,它等于直线(※)与椭圆交点处切线的斜率. 证明:设点P(x_0,y_0)是以k为斜率的弦P_1P_2的中点,点P_1(x_1,y_1),P_2(x_2,y_2)  相似文献   

6.
众所周知,过二次曲线Ax~2+Cy~2+Dx+Ey+F=0 (g)上一点P_1(x_1,y_1)的切线方程为Ax_1x+Cy_1y+D((x_1+x)/2)+E((y_1+y)/2)+F=0(h)。这是一个将切点(曲线上的点)的坐标x_1、y_1与切线上的点(曲线外的点)的坐标x、y联系起来的公式。当已知切点P_1的坐标P_1(x_1,y_1)时,将x、y看作变量,则(h)为过P_1的切线上点的坐标满足的方程,即过P_1的切线方程。当已知曲线外一点P的坐标P(x,y)时,将x_1、y_1看作变量,则(h)  相似文献   

7.
从一点P(x_0,y_0),引圆锥曲线的两条切线PR、PQ,切点为R、Q,那末以R、Q为端点的弦PQ叫切点弦,切点弦所在的直线称为点P关于圆锥曲线的极线;而P点称为极线关于圆锥曲线的极点。极线方程也叫切点弦方  相似文献   

8.
平面上的椭圆、双曲线、抛物线的标准方程为x~2/a~2±y~2/b~2=1、y~2=2px。在其曲线上的点(x_0,y_0)处的切线方程可表示为x_0x/a~2±y_0y/b~2=1、y_0y=p(x x_0)的形式。这种形式与原曲线方程有明显的对应关系,便于记忆,并可以推广到平面上高次曲线。为了便于讨论,我们把平面直角坐标系中3次曲线方程的一般形式表示为  相似文献   

9.
二次曲线上任意两点连线叫做弦,以P(x_0,y_0)为中点的弦称为二次曲线关于P的中点弦.我们知道,若P不为有心二次曲线的中心,则P的中点弦是唯一的. 定理设P(x_0,y_0)为二次曲线Ax~2 Bxy Cy~2 Dx Ey F=0内部一点(异于中心),则P的中点弦所在的直线方程为  相似文献   

10.
一、切点弦方程在平面解析几何中常见这样一个问题:“过圆外一点P(x_0,y_0)引圆x~2+y~2=R~2的两条切线求经过两个切点的直线方程。”这个问题有两种初等解法:  相似文献   

11.
六年制重点中学课本《解析几何》,在推导已知切点 p(x_0,y_0)的圆锥曲线的切线方程时,应用判别式求斜率 k,然后应用点斜式求出切线方程(详见课本).这种方法运算较繁,特别是用这种方法推导椭圆与双曲线的切线方程,在求斜率 k 时,求解更繁,这给教和学都带来不便.本文介绍一种简易求法.以抛物线为例,设 p(x_0,y_0)为抛物线  相似文献   

12.
学过《平面解析几何》的同学都知道:过椭圆x~2/a~2+y~2/b~2=1上一点P(x_0,y_0)的切线的方程是(x_0x)/a~2+(y_0y)/b~2=1①因(x_0~2)/a~2+(y_0~2)/b~2=1,又可写成(x_0x)/a~2+(y_0y)/b~2=(x_0~2)/a~2=(y_0~2)/b~2②, 一些细心的同学会问:当P(x_0,y_0)点不在椭圆上时,方程①或②的几何意义是什么呢?过椭圆外定点的椭圆的切线能否用方程①或②来表示呢?而少数粗心的同学在解题时没考虑点P的位置,直接套用方程①或②导致错误的情况时有发生。因此,有必要引导学生利用熟知的原理和方法,进行一番较深入的探讨。下面我们给出:  相似文献   

13.
求二次曲线以已知点为中点的弦的方程和弦的中点轨迹问题,已有不少文章论及,提出了许多不同的解法。本文从直线与二次曲线族的位置关系出发,也对这类问题进行一些探讨。一、二次曲线以已知点为中点的弦的方程我们知道,若直线l与圆心为O,半径为r的圆相切于P点,则任一以O为圆心,半径大于r的圆截l所得的弦都以P为中点。故给出点P(x_0,y_0)(异于原点)和圆x~2 y~2=R~2,当R~2>x_0~2 y_0~2时,要求以P为中点的弦所在直线的方程,只须在以原点为圆心的圆族x~2 y~2=r~2内,求出圆x~2 y~2=x_0~2 y_0~2在P点的切线方程即可,其方程为x_0x y_0y=x_0~2 y_0~2,即  相似文献   

14.
高中《解析几何》课本(必修)第62页给出过“已知圆x~2 y~2=r~2上一点M(x_0,y_0)的切线方程是x_0x y_0y=r~2”。有趣的是在某些条件下,这种形式的方程不表示圆的切线。 设M(x_0,y_0)是圆x~2 y~2=r~2外的一点。从M引圆的两条切线MA、MB,其中A(x_1,y_1)、B(x_2,y_2)为切点。那么,MA的方程是x_1x y_1y=r~2。  相似文献   

15.
每期一题     
题:如图,椭圆 x~2/a~2+y~2/b~2=1的切线与两坐标轴分别交于A、B两点,求三角形OAB的最小面积。 (下面一些解法是解析几何极值问题的常用解题方法。) 解法一利用二次函数极值知识。设切点为(x_0,y_0)(x_0>C,y_0>0),则切线AB的方程为  相似文献   

16.
椭圆以某定点为中点的弦并非一定存在,那么,中点弦存在的充要条件是什么?有何应用,本文作下列探讨: 一中点弦方程的一种求法。设椭圆b~2x~2 a~2y~2-a~2b~2=0,(a>0,b>0)…(1) 及定点P_0(x_0,y_0),若以P_0为中点的弦存在,且两端点分别为A(x_1,y_1),B(x_2,y_2) 则:b~2x_1~2 a~2y_1~2-a~2b~2=0 b~2x_2~2 a~2y_2~2-a~2b~2=0 两式相减整理得: (y_1-y_2)/(x_1-x_2)=(x_1 x_2)/(y_1 y_2)·b~2/a~2 =-b~2/a~2·x_0/y_0 (x_1≠x_2) 即k=-(b~2x_0)/(a~2y_0),代入点斜式得中点弦方程:a~2y_0y b~2x_0x=a~2y_0~2 b~2x_0~2……(2) 如果x_1=x_2,那么y_0=0,中点弦方程为x=x_0仍包含在(2)中。  相似文献   

17.
设直线l经过点(x_0,y_0),倾斜角为a,则此直线的标准参数方程为■其中t是参数,|t|代表点(x,y,)到点(x_0,y_0)的距离。利用直线的上述标准参数方程,可以方便的推出许多重要的结果。本文仅就它在点到直线的距离公式、二次曲线的切线方程和二次曲线的直径方程中的应用作一简要介绍。  相似文献   

18.
解析几何里有这样一类问题:过二次曲线 C:F(x,y)≡Ax~2+Bxy+Cy~2+Dx+Ey+F=0内部〔指包含焦点的平面区域(不包括周界)〕已知点 M(x_0,y_0)作直线与曲线C 相交于两点 A(x_1,y_1),B(x_2,y_2),使得 M 点平分弦 AB.例.过二次曲线 C:14x~2+24xy+21y~2-4x+18y-139=0内一点 M(1,-2)作一直线,使截得的弦被 M 点平分。求此直线的方程。  相似文献   

19.
贵刊1983年第5期刊登了《一类直线方程的四种求法》一文,该文介绍了解决如下问题的四种方法:过二次曲线C:F(x,y)=Ax~2+Bxy+Cy~2+Dx+Ey+F=0内部[指包含焦点的平面区域(不包括周界)]已知点M(x_0,y_0)作直线与曲线C相交于两点A(x_1,y_1),B(x_2,y_2),使得点M平分弦AB。对于这类问题,可作如下推广:过M作直线与曲线C相交于两点A(x_1,y_1),B(x_2,y_2),使得M点为弦AB的n等分点。当n≥3时,用《一类直线方程的四种求法》一文介绍的四种方法来求  相似文献   

20.
高中《平面解析几何》第68页第3题: 已知一个圆的直径端点是A(x_1,y_1)、B(x_2,y_2),证明:圆的方程是 (x-x_1)(x-x_2) (y-y_1)(y-y_2)=0。 这是解析几何中的一道典型习题,它给出了圆的方程的又一种形式。由于该形式含有圆的一条直径的两端点的坐标,故称它为圆的两点式方程。笔者在复习教学中,发现利用它可使以直线与二次曲线相交的弦为直径的圆的有关问题获得简捷解答。 应用1 先设出直线与二次曲线相交的弦两端点的坐标,然后由圆的两点式方程直接写出以相交的弦  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号