首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
题型1已知函数f(x)的解析式,求函数f[g(x)]的解析式. 解法:将函数f(x)中的全部x都用g(x)来代换,即可得到函数f[g(x)]的解析式.  相似文献   

2.
把两个变量的函数关系,用一个等式来表示,这个等式叫函数的解析式,简称解析式.函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.本文笔者对求解函数解析式常用的八种方法逐一进行介绍.一、配凑法已知f[g(x)]=h(x),求f(x)的解析式,常用配凑法.该方法主要通过观察、配方、凑项等使原函数变形为关于“自变量”的表达式,然后以x代替“自变量”得出所求函数的解析式.例1已知f(1 1x)=x12-1,求f(x)的解析式.解析把解析式按“自变量”1 1x变形得f(1 1x)=(1 1x)2-2(1 1x),在上式中以x代替(1 1x),得f(x)=x2-2x(x≠1).这里需要特别注意的是,不要遗漏解析式的定义域x≠1.二、待定系数法已知函数类型或图像以及相关条件,求函数解析式时,常用待定系数法.此方法适用于所求函数的解析式表达式是多项式的情形,首先确定多项式的次数,写出它的一般表达式,然后由已知条件以及多项式相等的条件确定待定的系数.例2已知二次函数f(x)满足条件f(0)=1及f(x 1)-f(x)=2x,求f(x).解析设f(x)=ax2 b...  相似文献   

3.
函数是高考中的重点知识,涉及到很多思想,方法.分段函数首先是函数,并且是一个函数,不是多个函数,其关键是根据各段解析式后的自变量取值范围来取对应的解析式,这样就要分段讨论、求解,即要重视分类讨论思想.求分段函数的函数值时,首先应确定自变量在定义域中所在的范围,然后按相应的对应法则求值.f(x)是分段函数,要求f{f[f(a)]},需要确定f[f(a)]的取值范围,为此又需确定f(a)的取值范围,然后根据所在定义域代入相应的解析式,逐步求解.  相似文献   

4.
抽象函数是指只给出函数的符号及一些性质,而没有给出具体的解析式及图像的函数。一抽象函数的定义域抽象函数f(x)的定义域是指x的取值范围. 若f(x)的定义域是D,则f[g(x)]的定义域即为g(x)∈D时的x的取值范围;若f[g(x)]的定义域是D,则f(x)的定义域即是x∈D时(?)的取值范围  相似文献   

5.
函数解析式是研究函数性质的基础 ,求函数的解析式是函数问题中较难掌握的一类问题 ,下面结合实例谈谈求函数解析式的 1 0种常用方法 .1 配凑法已知f[g(x) ]的解析式 ,求f(x)的解析式 ,常用配凑法 .例 1 已知f(x 1x) =x2 1x2 -x -1x 1 ,求f(x) .解 因为f(x 1x) =(x 1x) 2 - (x 1x) - 1 ,所以f(x) =x2 -x - 1 .评注 配凑法的关键就是通过观察 ,把f[g(x) ]的解析式凑成关于g(x)的形式 .2 换元法已知f[g(x) ]=h(x) ,且g(x)存在反函数 ,求f(x)的解析式 ,常用换元法 .例 2 已知f(x 1x ) =x2 1x2 1x,求f(x) .解 设x 1x =t,则x =1t…  相似文献   

6.
在函数满足若干条件下,求函数的解析式,是一类基本而重要的题型.本文就这类问题的若干求解方法,分类阐述如下.一、换元对于已知形如f[g(x)]的表达式,求f(x)解析式的问题,可以设出g(x)=t,从中  相似文献   

7.
函数是中学数学的重要内容。对于没有具体给出函数解析式的问题,学生感到非常抽象、复杂多变、难以理解,解题时束手无策,本文将这一问题归为六类,下面举例介绍给读者。一函数的定义域问题当函数y=f(x)的自变量为φ(x)而使函数成为复合函数y=f[φ(x)]时,苦y=f(x)的定义域是[a,b](a  相似文献   

8.
※求值问题※例1:已知函数f(x)=x2(x>0),1(x=0)0(x<0)".,求f{f[f(-3)]}的值.分析:明确自变量在函数的哪一个段上,是解此类题的关键.解:∵-3<0,∴f(-3)=0,∴f[f(-3)]=1,∴f{f[f(-3)]}=f(1)=12=1.※求解析式问题※例2:已知f(x)=x,g(x)=-x+1,!(x)=-12x+2.设f(x),g(x),!(x)的最大值为F(x),求F(x)的解析式.分析:本题的关键是画出图象,求出交点,从而正确地分段,再在各段上写出符合要求的解析式,最后写出分段函数的解析式.解:如图,画出f(x),g(x),!(x)的图象,下面再求交点坐标.!由y=-x+1,y=-21x+2".得yx==3-2,".由y=x,y=-12x+2".得y=34%%%%$%%%…  相似文献   

9.
中学生对于已知f(x),求f(a)以及f[φ(x)](这里a是常数,φ(x)是x的函数)都比较容易掌握。笔者现对已知f[φ(x)]或含f[φ(x)]的等式,求f(x)、f(a)举出几例的解法,仅供参考。一、换元法换元法是中学数学解题中常用的方法。利用这种方法求f(a)或f(x)的表达式时,一般只要对函数中的自变量作几次代换,转化为我们所熟悉的代数式的运算,最后换成所需的变量。例1.设f(x)是定义在R上的函数,满足f(2x-1)=x~2 x 1,求f(x)。  相似文献   

10.
一、拼凑法形如f[h(x)]=g(x)的结构,通过对g(x)进行观察、分析、变形,转化为关于h(x)的多项式,用x替换h(x)即得函数的解析式.例1已知函数f(x)满足:f(x-x1)=x2+x12,求f(x).解∵f(x-x1)=x2+x12=(x-1x)2+2,∴设x-x1=t,则有f(t)=t2+2.∴f(x)=x2+2.二、换元法形如f[h(x)]=g(x)的结构,可设h(x)=t,解出x,代入g(x)进行换元来解,以达到求f(x)的目的.例2已知f(11+-xx)=x(x≠-1),求f(x).解设1-x1+x=t,则x=11+-tt.∵f(t)=11+-tt,∴f(x)=11-+xx(x≠-1).三、待定系数法在求一个函数时,如果知道这个函数的一般形式,可先把所求函数写成一般形式,其中系数待定…  相似文献   

11.
抽象函数是相对于具体函数而言的,指没有给出具体函数的解析式,仅仅依据给定的性质来解决相关问题的一类函数,在多次考试中,常出现以抽象函数为背景的考题,因此我们在学习中应引起重视。一、抽象函数的定义域求函数的定义域是求单个变量x的取值集合。例1:①已知f(x)的定义域为[0,1],求f(x 1)的定义域。解:∵0≤x 1≤1∴-1≤x≤0即f(x 1)的定义域为[-1,0]。②已知f(x2)的定义域为[-1,2],求f(x)的定义域。解:∵-1≤x≤2∴0≤x2≤4,即f(x)的定义域为[0,4]。一般地,若f(x)的定义域为D,则f[g(x)]的定义域是{x?g(x)∈D},即求g(x)的值域为D时,对…  相似文献   

12.
介绍了由f(x)函数的图像到[f(x)]及{f(x)}型函数图像的一种简易作图方法,并讨论了这两类函数的一些性质,主要有:1)f(x)的奇偶性与[f(x)]、{f(x)}的奇偶性的关系;2)当f(x)连续时,[f(x)]与{f(x)}的不连续点的集合与集合∪k∈z的关系;3)当f(x)单调连续时,[f(x)]与{f(x)}在其不连续点处的性质。  相似文献   

13.
一、求简单复合函数单调区间定理:设函数u=g(x)的值域为N.1.若函数y=f(u)在N上为增函数,则u=g(x)的单调增(减)区间就是函数y=f[g(x)]的单调增(减)区间.2.若函数y=f(u)在N上为减函数,则u=g(x)的单调增(减)区间就是y=f[g(x)]的单调减(增)区间.本文根据上述定理归纳出一个比较容易的求复合函数单调区间的一般方法,其步骤是:(1)在y=f[g(z)](复合函数)中,换元即令u=g(x)(中间函数),则y=f(u)(原函数);(2)求出y=f(u)的单调区间N_i(i=1,2,…,n)并判定出增减;(3)求出使u=g(x)∈N_i的x范围M:(4)求  相似文献   

14.
我们知道√g(x)<f(x)(=){f(x)≥0,g(x)≤0,g(x)<[f(x)]2.√g(x)<f(x)(=){f(x)≥0,g(x)≤0,g(x)>[f(x)]2.或{f(x)<0,g(x)≥0.将无理不等式转化为等价的代数不等式(组)来解,往往须考虑符号,运算复杂.下面介绍另一求法,其理论根据是一元连续实函数y=f(x)的根(存在)将其定义域分成的各个区间上具有保号性.此方法步骤如下:  相似文献   

15.
运动是绝对的,静止是相对的;事物之间又是普遍联系的.数学中的函数则具体地体现了运动变化的事物(变量)之间的联系.函数 y=f(x)反映了自变量与因变量(函数)之间的关系 f.如 y=f(x)=2x 中,x 与 y 的关系为y 是 x 的2倍.但在许多具体问题中,变量 x、y之间的关系并不是这么简单明了.如 y=f(x)=sin(2x π/3),x、y 之间的关系较复杂.但把  相似文献   

16.
1.已知f(x)的定义域。求f[g(x)]的定义域思路设函数f(x)的定义域为D,即x∈D,所以f的作用范围为D,又f对g(x)作用,作用范围不变,所以g(x)∈D,解得x∈E,E即为f[g(x)]的定义域.  相似文献   

17.
微积分拾趣     
微积分是理工科、经济类的一门重要基础课程。学好微积分,可以为学习其它学科打下坚实的基础。本文的目的以期提高学习微积分的兴趣,从中也可以学习微积分解题的综合分析能力和技巧。为此,以下所举各例共大家研讨时参考。 例1.如果函数φ(x)、f(x)、g(x)为X∈R上的单调增加函数,那么二重函数φ[φ(x)]、f[f(x)]、g[g(x)]在X∈R上是否也是单调增加函数?  相似文献   

18.
正在中学数学的函数教学域是最基本的题型.如果给出了函数的解析式,求它的定义域,只需求出使函数解际问中,求一个函数的定义析式有意义(在实题中,还需符合实际)的所有自变量的集合.对于复合函数y=f(g(x))而言,已知复合函数  相似文献   

19.
<正>高中阶段对数学公式要求做到正用、逆用、变用.中学阶段的导数公式主要是和、差、积、商的求导法则,即函数f(x),g(x)是可导函数,则[f(x)±g(x)]'=f'(x)±g'(x);[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x);  相似文献   

20.
首先指出,当自变量x在点x_0处得到增量△x而变为x_0 △x时,函数u=g(x)的函数值就由u_0=g(x_0)变成u=g(x_0△x)。此时或有≠u_0,或有u≠u_0。记△u=u-u_0,则或有△u=0,或有△u≠0。记由增量△u引起的函数y=f(u)在u_0,处的增量为△y=f(u_n △u)-f(u_n)。由于u_n △u=u=g(x_n △x),u_n=g(x_n),得△y=[g(x_n △x)]-f[g(x_n)]。因此△y同时是函数y=f[g(x)]在x_0处由增量△x引起的函数y的增量。当增量△x使u=u_n时,有△y=0。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号