首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
以固载于玻碳电极(GC)表面的壳聚糖/多壁碳纳米管(MWNT~CS)复合物膜为基底电聚合媒介体甲苯胺蓝(PTOB),利用静电作用吸附纳米金(nano--Au),再利用纳米金良好的生物兼容性、大的比表面积固定癌胚抗体(anti—AFP),从而制得高灵敏、高稳定电流型癌胚抗原免疫传感器。多壁碳纳米管复合物膜促进了电子的传递.增大了电极的比表面积:纳米金的存在增加了抗体在电极表面的固定量,从而提高了免疫电极的灵敏度。在优化的实验条件下.该免疫电极在1.0~80.0ng/mL范围内,峰电流与CEA抗原的浓度呈良好的线性关系。检测线为0.4ng/mL。该免疫传感器制备方法简单,灵敏度高、选择性好。  相似文献   

2.
通过胱胺将负电性的褐藻酸钠(AS)共价结合到纳米金表面形成聚合体,并以此来标记三碘甲状腺氨酸(T3).T3抗体固定在金电极上构成检测T3的电化学免疫传感器.通过免疫反应,标记T3和待检测的T3结合到金电极表面,使电极表面微环境发生显著改变,用Fe(CN)6^4 为电化学探针,用循环伏安法获取电极表面微环境改变的电化学信息来检测T3、其检测的线性范围为100—10000pg/mL,检测限为45pg/mL.  相似文献   

3.
通过静电吸附作用将普鲁士蓝(PB)固定在玻碳电极(GCE)表面,再依次电沉积L半胱氨酸(L—Cys)、氯金酸(HAuCl4).通过氯金酸与甲胎蛋白抗体(anti—AFP)中氨基的键合作用,将抗体固定在电极表面,最后用牛血清白蛋白(BSA)封闭电极表面的非特异性吸附位点,从而成功制备了一种新型的电流型甲胎蛋白免疫传感器.实验利用循环伏安法对电极的制备过程及性能进行了表征,结果表明该免疫传感器对AFP有很好的电流响应,其线性范围为0.01~200.0ng/mL,检出限为0.003ng/mL.该实验方法操作简便,制得传感器灵敏度高,实现了对AFP的定量分析.  相似文献   

4.
在金电极表面自组装L-半胱胺酸,然后吸附金溶胶,再将乙型肝炎表面抗体(HbsAb)固定在金纳米颗粒上,制成用于检测乙型肝炎表面抗原(HbsAg)的一种新型电流型免疫传感器。通过循环伏安法考察了电极的电化学特性。该传感器制作简单、响应时间短(2min)、选择性好和灵敏度高,该免疫传感器对乙型肝炎表面抗原(HbsAg)检测的线性范围是5μg/L~130μg/L,检出限为0.86μg/L。  相似文献   

5.
采用纳米金和牛血清白蛋白(BSA)-二氧化钛(TiO2)固载抗体制得灵敏度较高的甲胎蛋白(AFP)免疫传感器,采用了循环伏安法对传感器的制备过程进行表征.实验结果表明,该传感器对AFP有很好的电流响应,其线性范围为0.01~80.0ng/mL,检出限为0.003ng/mL.该实验方法具有电极制备简单,操作简便,灵敏度高等特点,实现了对AFP的定量分析.  相似文献   

6.
借助Au-S的作用,将L-半胱氨酸组装在纳米金电极表面上,利用罗丹明B(Rhodamine B)与L-半胱氨酸之间静电的作用,将罗丹明B间接组装于纳米金电极表面,构建罗丹明B纳米金电极。采用差分脉冲伏安法,研究十二烷基苯磺酸钠在罗丹明B纳米金电极上的电化学反应,实验结果表明,在pH为4.75的醋酸-醋酸钠缓冲液中,罗丹明B纳米金电极在0—2.0×10-6g/L范围测定十二烷基苯磺酸钠的线性较好,对十二烷基苯磺酸钠检出限为2.4×10-9g/L。  相似文献   

7.
用硫堇作为电子媒介体, 利用溶胶-凝胶法将壳聚糖固定在金电极表面, 应用分子间的化学键自组装硫堇、纳米金、辣根过氧化物酶制成生物传感器. 通过循环伏安法验证该传感器的电化学活性:在pH = 8.0 , 温度为25℃的优化条件下, 传感器的检测范围为1×10-8mol/L~1×10-2mol/L, 检测下限为10-8mol/L, 可用于检测过氧化氢.  相似文献   

8.
用镀膜/循环伏安法制备了铁氰化钴修饰玻碳电极,并以该电极为研究对象,采用循环伏安法考察了不同扫描速率对该电极电催化活性的影响及甲醇在该电极上的催化动力学行为.结果表明:铁氰化钴修饰玻碳电极表现出较高的对甲醇的电化学氧化催化活性,甲醇在该修饰电极上的电化学催化氧化是表面吸附控制过程.  相似文献   

9.
利用滴涂于玻碳电极(GCE)表面的以Nafion膜中负电性的磺酸基与天青I(AI)阳离子之间的静电作用,实现天青I在电极上的固定化,再通过静电吸附和自组装技术将纳米CdS吸附的辣根过氧化物酶(HRP)修饰到电极表面,制备出性能良好的H2O2生物传感器.采用循环伏安法(CV)和计时电流法考察了该传感器的电化学性质.实验表明,该传感器具有良好的生物催化活性,较高的灵敏度,良好的选择性和稳定性,且易于制作等特点.响应电流与H2O2浓度在8.0×10-6~1.6×10-3mol/L范围呈现良好的线性关系,检出限为2.72×10-6mol/L.  相似文献   

10.
以邻苯二胺(o-PD)为功能单体,采用电化学聚合的方法,在金电极表面电聚合成分子印迹聚合物膜。洗脱模板分子,优化制备过程的条件,获得了L-酪氨酸(L-Tyrosine)分子印迹传感器敏感膜。并通过循环伏安法(CV)、示差脉冲伏安法(DPV)和电化学阻抗谱法(EIS)三种方法考察了电极的性能;在循环伏安法(CV)方法测试结果表明,模板分子L-酪氨酸在磷酸缓冲溶液(PH=8.0)中与功能单体邻苯二胺能聚合并吸附在金电极表面,并且在聚合前后及洗脱模板分子前后峰电流有明显差异;由示差脉冲法(DPV)测试结果表明,在(1×10-22.0)mg/m L范围内,峰电流与L-酪氨酸的浓度成线性关系,检出为2.0 mg/m L。选择识别性实验结果表明,该分子印迹修饰电极对与L-酪氨酸相似的L-苯丙氨酸、L-丙氨酸、L-色氨酸、L-天冬氨酸的电流响应很小,说明分子印迹传感膜对L-酪氨酸有特异性识别功能;EIS方法测试表明,印迹电极对L-酪氨酸分子具有识别作用。  相似文献   

11.
通过改变反先驱体中氯金酸含量,用水热法实现不同数量金纳米颗粒在活性炭表面的负载。采用透射电子显微镜(TEM)、红外光谱分析仪(IR)、同步热分析仪(TG)、比表面及孔径分析仪以及紫外可见吸收光谱(UV/Vis)对所得材料的形貌、组成和结构进行表征,并对其吸附性能进行研究。结果表明:采用水热法可实现不同数量金纳米颗粒在活性炭表面的均匀负载。负载金纳米颗粒在对活性炭组成影响不大的情况下能有效提升活性炭的热稳定性。随着负载量的增加,金纳米颗粒附着在活性炭的孔洞上引起比表面积和孔隙率逐渐减小。将活性炭负载金纳米颗粒的复合物对苯酚进行吸附处理,通过调整负载金纳米颗粒的数量可对活性炭吸附性能进行有效调控。  相似文献   

12.
以抗坏血酸为还原剂,制备了一定粒径的纳米金.所制备的纳米金对葡萄糖与菲林试剂反应有强烈的催化作用,且生成的氧化亚铜微粒在870 nm处的吸光度与葡萄糖含量呈正比.据此,在优化实验条件下,建立了分光光度法检测葡萄糖含量的新方法.该方法灵敏度高、操作简单,可用于葡萄糖的快速检测.  相似文献   

13.
结合量子点与胶体金颗粒优良的光学性能,利用抗体识别技术,基于人IgG修饰的量子点与羊抗人IgG修饰的胶体金之间的荧光共振能量转移效应,建立了一种新型免疫分析方法用于人IgG的检测.这种方法操作简便,实验条件温和,特异性好,安全可靠.  相似文献   

14.
纳米金是指直径为1 nm~100 nm的金的微小颗粒,具有良好的稳定性、量子效应、表面效应、宏观量子隧道效应、光学效应以及特殊的生物相容性,在许多领域有着极其广泛的应用.文章介绍了六种纳米金化学制备方法,讨论了纳米金在工业催化、生物医药、生物分析化学、食品安全快速检测等方面的应用.  相似文献   

15.
本文采用循环伏安法在氧化铟锡导电玻璃上电沉积金,利用自组装技术制备了半胱氨酸-纳米金修饰电极,并对抗坏血酸进行检测。实验结果表明,半胱氨酸-纳米金修饰电极与葡萄糖具有良好的电催化效应,其氧化峰电流对抗坏血酸在6×10-6~6×10-4mol L-1的范围内呈良好线性关系,检出限为2.1×10-6 mol L-1。并用于实际样品的测定,取得了较好的结果。  相似文献   

16.
研究了罗丹明6G与金纳米微粒相互作用的RRS光谱、荧光光谱和吸收光谱的特征,发现:当体系中存在过量的罗丹明6G染料时,金纳米微粒在一定的浓度范围内分别与体系的RRS强度、荧光强度、吸光度成正比,且灵敏度高,其检出限达到纳克级.由此,可以建立RRS法、荧光猝灭法、吸收光度法来测定溶液中的金纳米微粒.  相似文献   

17.
制备不同粒径的胶体金颗粒并用于标记免疫球蛋白M(IgM)抗血清,采用分光光度法和共振散射光谱法考察了不同粒径的金标记抗血清的标记效率以及液相免疫金体系的共振散射效应.结果表明,液相体系宜选择小粒径纳米金颗粒.  相似文献   

18.
利用紫外可见光度法研究了纳米金粒子与雌激素的相互作用,纳米金与雌酮发生相互作用后,吸收光谱明显红移.吸光度比值A/A520与雌酮浓度的对数值在1.0×10-7~1.0×10-5mol/L范围内呈良好的线性关系,检测限为4.7×10-9mol/L.本研究建立了一种快速、方便检测雌激素的新方法,为水体、奶粉、食品中雌激素的检测提供了一条新的途径.  相似文献   

19.
报导了一种用于自组装膜研究的原子级平整金基底的制备方法。采用这种方法,得到金以(111)取 向的原子级平整基底,同时使用扫描探针显微镜(SPM)考察了该种金基底的自组装性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号