首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1990年全国初中数学联赛第一试有一题:方程7x~3-(K+13)x+k~(2)-k-2=0(k 是实数)有两个实根α、β,且0<α<1,1<β<2。那么 K 的取值范围是什么?解此题时,许多同学出现了下列错误解法:解:∵0<α<1,1<β<2,∴1<α+β<3,0<αβ<2.根据韦达定理α+β=(K+B)/7,αβ=(k~(2)-k-2)/7依题意有(k+13)~(2)-4·7·(k~(2)-k-2)>01<(k+13)/7<30<(k~(2)-k-2)/7<2  相似文献   

2.
二次方程之根的分布及个数,可经过计算求出,但学生往往因考虑问题不全面会产生遗漏,通过复合幻灯片,多方位地引导学生观察,寻找规律,可引起兴趣,使其条理分明,迅速地解题。例1 k为何值,7x~2-(k+13)x+k~2-k-2=0两根分别在(0,1)与(1,2)之内。 [投影演示] 图1,抛物线与横轴交点A、B在于(0,1)、(1,2)之间。解:设f(x)=7x~2-(k+13)x+k~2-k-2,从图象可以看出:  相似文献   

3.
在学生的作业中,甚至在有些书刊中,把必要条件当充分条件运用,致使在解题中得到错误结论。下面略举几例。例1:当k是什么实数时,方程:7x~2-(k+13)x+k~2-k-2=0有两个不相等的实数根,且两根分别在区间(0,1)和(1,2)内。有的资料给出了如下错误提示: 错误的原因在于是成立的必要条件,而提示中却把它当作充要条件。因此,由提示不能获得正确的答案。略解:设f(x)=7x~2-(k+13)x+k~2-k-2,利用二次函数的图象性质,可得:  相似文献   

4.
复合二次函数y=aφ~2(x) bφ(x) c(a≠0)的极值问题,在初等数学中占有非常重要的地位。先看一个例子: 已知x_1,x_2是方程x~2-(k-2)x (k~2 3k 5)=0(k是实数)的两个实根,x_1~2 x_2~2的最大值是(A)19,(B)18,(C)5 5/9(D)不存在。有人这样解:据韦达定理x_1 x_2=k-2,x_1x_2=k~2 3k 5,因此有 f(k)=x_1x~2 x_2~2=(x_1 x_2)~2-2x_1x_2=-(k-2)~2-2(k~2 3k 5)即 f(k)=-k~2-10k-6它二次项系数为负,因此有最大值 4ac-b~2/4a=4(-1)(-6)-(-10)~2/4(-1)=19  相似文献   

5.
一、从一道试题谈起例1 已知x_1,x_2为方程x~2-(k-2)x+k~2+3k+5=0的两实根(k为实数),则x_1~2+x_2~2的最大值是(A)19,(B)18,(C)5(5/9),(D)不存在.……( ) 这是八二年全国数学竞赛试题中的一道选择题。当时参加竞赛的学生多数选择了第一个答数,即认为  相似文献   

6.
一、三次函数的图象及其性质对于三次函数 y=f(x)=ax~3+bx~2+cx+d(a≠0),我们有 y′=f′(x)=3ax~2+2bx+c.设导函数 y′=f′(x)的判别式为△=4b~2-12ac=4(b~2-3ac).(1)当 a>0时,(i)若△>0,则方程 f′(x)=0有两个不等的实根。设两实根为 x_1,x_2(x_10、f(x_2)<0)时,图象与 x 轴有三个不同的  相似文献   

7.
△=b~2-4ac是一元二次方程ax~3 bx c=0的根的判别式,利用它可以不解方程,直接判别方程根的情况。实际上,在解题中,△=b~2-4ac的用途是相当广泛的。 1.△=b~2-4ac在“四个二次”问题中的应用 例1 已知方程(1)x~2-2kx k~2 k=O,(2)x~2-(4k 1)x 4k~2 k=0,(3)4x~2-(12k 4)x 9k~2 8k 12=0中至少有一个方程有实根,求k的取值范围。 分析 结论中“至少有一个方程有实根”的含义为:可能有一个方程有实根;可能有两个方程有实根;可能有三个方程有实根。 从分析看出,此题要用△≥0来解决。但情况复杂,解题繁琐,难以直接证明。因此,  相似文献   

8.
中学数学中的一些问题转化为函数问题来处理较为方便。例1 若方程7X~2-(k+13)X+k~2-k-2=0的两根分别在(0,1)和(1,2)内,求k的取值范围。解:把方程左边看成是二次函数f(X),它的图象是开口向上的抛物线,它在(0,1)和(1,2)区间与X轴相交的充要条件是f(0)>0,f(l)<0,f(2)>0。  相似文献   

9.
在不等式的证明中,学生会遇到一些有趣的问题。例1.若 x_1>0,x_2>0,且 x_1+x_2=k,则 x_1x_2≤k~2/4.证设 x_1=k/2+t,x_2=k/2-t.(0≤t<1/2)有 x_1x_2=(k/2+t)(k/2-t)=k~2/4-t~2≤k~2/4.容易看出,x_1x_2的值是随着 t 的增大而减小的,当 t=0时,即 x_1=x_2=k/2时,x_1x_2达到极大值 k~2/4.  相似文献   

10.
本文给出用极值求两图形间的距离的方法。一、求点到直线的离距。 1.在平面上,求点A(x_1,y_1)到直线l:y=kx+b的距离d。解:在直线l上任取一点p(x,y),则 |AP|=((x-x_1)~2+(y-y_1)~2)~(1/2) =((x-x_1)~2+(kx+b-y_1)~2)~(1/2) =((1+k~2)x~2-2(x_1+ky_1-kb)x+x_1~2+(y_1-b)~2)~(1/2) =((1+k~2)(x-(x_1+ky_1-kb)/(1+k~2))~2+(kx_1-y_1+b)~2/(1+k~2))~(1/2)当x=(x_1+ky_1-kb)/(1+k~2)时,|AP|取极小值d。所以d=|AP|极小=|kx_1-y_1+b|/(1+k~2)~(1/2)=0给出,则k=-A/B,b=-C/B,于是 d=|-(A/B)x_1-y_1-C/B|/(1+(A~2/B~2))~(1/2) =|Ax_1+By_1+C|/(A~2+B~2)~(1/2)  相似文献   

11.
众所周知 ,解分式方程最常用的方法是去分母法 ,这样 ,未知数的允许值范围可能扩大 ,解出的未知数的值必须检验 ,以防增根出现 .因此在探讨分式方程的解时 ,应十分注意增根 .下面举例说明 :一、分式方程“有解”情形例 1  k为何值时 ,分式方程 kx2 + 5x + 4-2x + 4+ 1x + 1=0有负根 .解 :去分母得 :k - 2 ( x + 1) + ( x + 4) =0解得 x =k + 2 .由题意知 :x =k + 2 <0且 x =k + 2≠ - 1且 x =k + 2≠ - 4,故当 k <- 2且 k≠- 3且 k≠ - 6时 ,原方程有负根 .例 2  k为何值时 ,分式方程 k( k + 2 )2 x - k( k - 1)2 ( x - 1)= 1有两实根 .解…  相似文献   

12.
学生在解题中发生的错误有时是因为未能正确地利用隐含条件所致。现就笔者碰到的一些情况,举例如下,以引起大家的注意,做到防患于未然。例1 k为何值时,实系数二次方程x~2-kx+k+8=0两实根的平方和最小。错解:由韦达定理有 x_1+x_2=k,x_1·x_2=k+8. 又由题意得:y=x_1~2+x_2~2(x_1+x_2)~2  相似文献   

13.
x的一次方程与x的一元二次方程都是关于x的方程,区别只是x的一元二次方程多了一个隐含条件,如二次项系数不为零,然而这个不明显的条件,导致很多同学把关于x的方程的实根误认为是关于x的一元二次方程的实数根。为避免这种错误,特举几例加以说明。例1k为何值时,关于x的方程2(k+1)x2+4kx+2k-1=0有实数根?解:若方程2(k+1)x2+4kx+2k-1=0是一元二次方根,则k应满足:2(k+1)≠0△=(4k)2-4×2(k+1)·(2k-1)≥0kk≠≤1-1k≤1且k≠-1若方程2(k+1)x2+4kx+2k-1=0是一元一次方程,则有2(k+1)=0即k=-1·当k=-1时,原方程为-4x-3=0,方程有实数根x=-43,综合两种…  相似文献   

14.
徐炼 《今日中学生》2004,(33):14-15
一元二次方程知识是中考重点考查内容之一,而命题者也常常利用同学们容易混淆的概念或容易忽视的知识点精心设计“陷阱”.现归类剖析几例,望同学们引以为鉴.一、利用一元二次方程的概念设计“陷阱”例1关于x的方程k2x2+(2k+1)x+1=0有两个不相等的实根,求k的取值范围.错解:∵原方程有两个不相等的实根,∴△=(2k+1)2-4k2>0.解得k>-14.∴k的取值范围是:k>-14.剖析:方程k2x2+(2k+1)x+1=0有两个不相等的实根的条件是:(1)二次项系数k2≠0;(2)△>0.解题者只注意了(2),而忽视了(1),即忽视了二次项系数不为零的情况,故正确答案是:k>-14且k≠0.二、利…  相似文献   

15.
一、方程f(x)~(1/2)+g(x)~(1/2)=k(k>0)表明,(f(x)~(1/4),g(x)~(1/4)为圆f(x)~(1/2)=k~(1/2)(cost)g(x)~(1/4)=k~(1/2)(sint)与倾角为t之径线的交点坐标,因而可设 f(x)=k~2cos~4t g(x)=k~2sin~4t’通过三角变换直接或间接地解得x。例1.解方程 2x-1~(1/2)+x+3~(1/2)=4 解:设 2x-1=16cos~4t x+3=16sin~4t(1/2相似文献   

16.
<正>日前,笔者在高三导数复习课上,选择了某市的一道调研试题作为例题:已知函数f(x)=(1-a+ln x)/x,其中a∈R.(1)求f(x)的极值;(2)若1n x-kx<0在x∈(0,+∞)上恒成立,求实数k的取值范围;(3)已知x_1>0,x_2>0,且x_1+x_2x_1x_2.分析对于第(1)问,易得当x=e~a时,f(x)取极大值e~(-a).对于第(2)问,同学们异口  相似文献   

17.
问题所谓实根分布就是方程的根的分布情况的充要条件.设实系数一元二次方程f(x)=ax^2+bx+c=0(α≠0)的实根是x1,x2,且x1&;lt;x2,k或k1,k2(k1&;lt;k2)是任意给定常数,为记忆方便,我们把实根分布情况归纳成右表.  相似文献   

18.
同学们在学习分式的时候,经常会遇到有关多元的求值问题,解答时,可以利用消元的方法,化难为易.一、取值消元法例1已知abc=1,那么aab+a+1+bbc+b+1+cca+c+1=.解:不失一般性,取a=1,b=1,c=1,则原式=13+13+13=1. 二、主元消元法例2已知4x-3y-6z=0,x+2y-7z=0,则5x2+2y2-z22x2-3y2-10z2等于(A)-12 (B)-192 (C)-15(D)-13 解:以x、y为主元,那么4x-3y=6z,x+2y=7z .∴x=3z,y=2z.∴原式=5×9z2+2×4z2-z22×9z2-3×4z2-10z2=-13.选D. 三、比值消元法例3已知x2=y3=z4,则x2-2y2+3z2xy+2yz+3zx的值是.解:设x2=y3=z4=k,得x=2k,y=3k,z=4k…  相似文献   

19.
一元二次方程的根的判别式和韦达定理(根与系数关系)在解题中有广泛的应用,近年来中考中屡屡以压轴题形式出现,现举例说明·例1(四川省)已知关于x的方程x2-2(m+1)x+m2-2m-3=0,①的两个不相等实数根中有一个根为0,是否存在实数k,使关于x的方程x2-(k-m)x-k-m2+5m-2=0,②的两个实数根x1、x2之差的绝对值为1?若存在,求出k的值;若不存在,请说明理由·解:因为方程①有两个不等实根,所以Δ=|-2(m+1)|2-4(m2-2m-3)=16m+16>0,所以m>-1·又因为方程①有一根为0,所以m2-2m-3=0,即(m-3)(m+1)=0·解得m1=-1,m2=3·又因为m>-1,所以m1=-1应舍去,所以m=3·当…  相似文献   

20.
韦达定理是代数中的一个重要定理,它在解析几何中也有广泛的应用。在解某些解析几何题时,如果注意运用韦达定理,有时能使运算简便。如以下几例。 一、利用x_1 x_2=-b/a 例1.点P(2,2)是椭圆x~2 8y~2 4x-24y 6=0的一条弦的中点,求这条弦所在的直线方程。 解:设所求的直线方程为y-2=k(x-2),它与椭圆的方程x~2 8y~2 4x-24y 6=0组成方程组,消去y得:(1 8k~2)x~2-(32k~2-8k-4)x 32k~2-16k-10=0,设它的两个根是x_1和x_2,则有x_1 x_2=4,根据韦达定理有  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号