首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The aims of this study were to determine the underlying conceptual structure of the thermal concept evaluation (TCE) questionnaire, a pencil-and-paper instrument about everyday contexts of heat, temperature, and heat transfer, to investigate students’ conceptual understanding of thermal concepts in everyday contexts across several school years and to analyse the variables—school year, science subjects currently being studied, and science subjects previously studied in thermal energy—that influence students’ thermal conceptual understanding. The TCE, which was administered to 515 Korean students from years 10–12, was developed in Australia, using students’ alternative conceptions derived from the research literature. The conceptual structure comprised four groups—heat transfer and temperature changes, boiling, heat conductivity and equilibrium, and freezing and melting—using 19 of the 26 items in the original questionnaire. Depending on the year group, 25–55% of students experienced difficulties in applying scientific concepts in everyday contexts. Years of schooling, science subjects currently studied and physics topics previously studied correlated with development of students’ conceptual understanding, especially in topics relating to heat transfer, temperature scales, specific heat capacity, homeostasis, and thermodynamics. Although students did improve their conceptual understandings in later years of schooling, they still had difficulties in relating the scientific concepts to their experiences in everyday contexts. The study illustrates the utility of using a pencil-and-paper questionnaire to identify students’ understanding of thermal concepts in everyday situations and provides a baseline for Korean students’ achievement in terms of physics in everyday contexts, one of the objectives of the Korean national curriculum reforms.  相似文献   

3.
Numerous studies have shown that students often hold conceptions that conflict with accepted scientific ideas, both prior to and after instruction. The failure of instruction to affect students' conceptions can be interpreted as a failure to facilitate conceptual change. In this paper, an instructional strategy will be described that facilitates conceptual change in the special case where conceptual difficulties appear to arise because students confuse related physics concepts. The strategy involves two parts. Firstly, students observe an experiment or demonstration that conflicts with what they expect to see. Secondly, the instructor identifies students' intuitions that are correct but that they have associated with an incorrect physics term, and substitutes the correct physics term. Students can thus develop more scientifically acceptable understandings of physics concepts without having to give up their intuitive ideas. The use of this strategy will be illustrated in two domains of physics. Specializations: physics education, conceptual development, instructional design, improvement of tertiary science education.  相似文献   

4.
The purpose of this study was to investigate the patterns of students' conceptual restructuring within the theoretical framework of biologic evolution. The study draws on conceptual change theory in an effort to define the limits of the theory and suggest other models of restructuring. Through a series of 17 structured and open-ended interviews with each of 4 participants, the students' changing conceptions about facets of evolutionary theory were documented throughout the school year. Interview questions were developed from the wealth of alternative conceptions documented in the literature, and many interview techniques were employed to assure the mode validity of all research findings. The conceptual change documented demonstrates that many conceptions in this content area are closely interwoven, so that a change in one conception requires a change in many others. Four patterns of conceptual change were seen: (a) cascade, (b) wholesale, (c) incremental, and (d) dual constructions. Of these 4, only 2 conform to the changes described by conceptual change theory. The other two patterns suggest that different models of conceptual restructuring are required for further science education research. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
This research involved na?ve physics learners who were interested in majoring in science or engineering. In a semester-long quasi-experimental study, open-ended pretests and weekly interviews were used to analyse the progressive development of students’ conceptions relating to sound and wave motion. Semi-structured interviews were also conducted to elucidate: (1) how their conceptions developed from everyday conceptions to unclear scientific conceptions to scientific conceptions, and (2) their beliefs of physics knowledge. Despite efforts to enable these students to learn physics, the findings showed that only two out of ten students developed acceptable physics conceptions during the course that would enable them to pursue the subject to a higher level. Also, students’ conceptual development was found to be related to their cognitive understanding and to epistemological beliefs of physics. Therefore, to facilitate na?ve physics learners’ success in a general physics course, in addition to the acquisition of content knowledge, explicit emphasis needs to be placed on the nature of physics knowledge.  相似文献   

6.
An understanding of mechanical waves is a pre‐requisite for the study of many topics in advanced physics, and indeed in many other disciplines. There have been many research studies in mechanical waves, all of which have revealed that students have trouble with the basic concepts. Therefore, in order for teachers to prepare appropriate instruction for their classes, it is useful to diagnose their students' conceptions—if possible before they enter class. It is for this purpose that many diagnostic instruments have been developed, often in the form of multiple‐choice tests. In this study, we have used the open‐ended Wave Diagnostic Test to develop a multiple‐choice conceptual survey in an evolutionary manner. The two‐year development procedure included open‐ended surveys and interviews involving 299 Thai students and 88 Australian students. The final version, called the Mechanical Waves Conceptual Survey, has been administered to 632 Australian students from high school to second‐year university and 270 Thai high school students. Standard statistical analyses show that the survey is reliable and valid. Further validity checks, including consultation with experts, were also carried out. The survey has four subtopics—propagation, superposition, reflection, and standing waves—and the teachers can choose the subtopics relevant for their students. In this paper we also demonstrate the use of a typical survey question to test students' conceptual understanding and identify common alternative conceptions.  相似文献   

7.
In learning conceptual knowledge in physics, a common problem is the development and differentiation of concepts in the learning process. An important part of this development process is the re-organisation or re-structuring process in which students’ conceptual knowledge and concepts change. This study proposes a new view of concept development with explicit attention given to concept development from the level of knowledge-as-pieces to the level of knowledge-as-theory. The proposed new picture is based on the view that concepts are complex constructs essentially embedded in a larger system of knowledge. Three closely connected aspects require our attention: (1) conceptions of concepts, (2) conceptions of knowledge systems, and finally, (3) conceptions of the process of change. The potential advantages of this prospective are demonstrated through the re-analysis of the concept development in the well-known case of electric current and voltage. The results show that in the concept development process, both causal knowledge and coherence of the knowledge system play crucial roles. Finally, the study points out how the theoretical position proposed here directly impacts conceptions of learning and instruction as well as what solutions are sought for problems in learning—or even what is considered a problem or success in learning.  相似文献   

8.
9.
The revolution in XX century physics, induced by relativity theories, had its roots within the electromagnetic conception of Nature. It was developed through a tradition related to Brunian and Leibnizian physics, to the German Naturphilosophie and English XIXth physics. The electromagnetic conception of Nature was in some way realized by the relativistic dynamics of Poincaré of 1905. Einstein, on the contrary, after some years, linked relativistic dynamics to a semi-mechanist conception of Nature. He developed general relativity theory on the same ground, but Hilbert formulated it starting from the electromagnetic conception of Nature. Here, a comparison between these two conceptions is proposed in order to understand the conceptual foundations of special relativity within the context of the changing world views. The whole history of physics as well as history of science can be considered as a conflict among different worldviews. Every theory, as well as every different formulation of a theory implies a different worldview: a particular image of Nature implies a particular image of God (atheism too has a particular image of God) as well as of mankind and of their relationship. Thus, it is very relevant for scientific education to point out which image of Nature belongs to a particular formulation of a theory, which image comes to dominate and for which ideological reason.  相似文献   

10.
The purpose of this study was to explore the influences of text structure on students' conceptual change. Case studies were conducted of three sections of physics (Physical World, Physics, and Honors Physics) for 8 months of an academic year. Qualitative data (including observation field notes, interviews, videotapes, audiotapes, and questionnaires) were analyzed from the perspective of grounded theory by constant comparison through the framework of social constructivism. Results showed that individuals used refutational text to change their alternative conceptions, find support for their scientific preconceptions, gain the language necessary to discuss their ideas, and acquire new concepts. We also found instances, however, when students ignored the text and persisted with their alternative conception, or when students found support for their nonscientific ideas from refutational text. In these cases, we found that either the refutation was not direct enough to be effective, or students' reading strategies were insufficient to facilitate conceptual change. In investigating the power of refutational text, we found that refutational text does cause cognitive conflict. We also discovered that while cognitive conflict may be necessary for conceptual change to occur, it is not sufficient. Although refutational text is effective on the average for groups of students, it will need to be supplemented by discussion for individuals. J Res Sci Teach 34: 701–719, 1997.  相似文献   

11.
Integrated science teaching is a task which requires that teachers develop new conceptual structures for the science topics they teach. It is often assumed that changes in teaching can be facilitated through reflective practices such as teacher self-assessment. Does self-assessment in fact help teachers develop new conceptual structures in the context of integrated science? We examine this assumption in the research reported in this paper. In the German PING project—an integrated science project for middle schools—teacher in-service education was based on collaborative workshops in which a group of 22 teachers from different types of schools used teaching materials for eight integrated topics for their lesson planning and conducting units over a period of 30 months. During this time concept maps, interviews and questionnaires were used as means to promote teacher self-assessment. We find that this kind of self-assessment in a collaborative framework was a useful basis for helping science teachers develop integrated conceptual structures and we suggest that in-service courses might use self-assessment for reflection on conceptual content knowledge as a basis for supporting integrated science teaching.  相似文献   

12.
13.
Today there is much interest in teaching secondary students about climate change. Much of this effort has focused directly on students’ understanding of climate change. We hypothesize, however, that in order for students to understand climate change they must first understand climate as a system and how changes to this system due to both natural and human influences result in climatic and environmental changes and feedbacks. The purpose of this article is to articulate a climate system framework for teaching about climate change and to stimulate discussion about what secondary students should know and understand about a climate system. We first provide an overview of the research on secondary students’ conceptions of climate and climate change. We then present a climate system framework for teaching about climate and climate change that builds on students’ conceptions and scientific perspectives. We conclude by articulating a draft conceptual progression based on students’ conceptions and our climate system framework as a means to inform curriculum development, instructional design, and future research in climate and environmental education.  相似文献   

14.
Historical excurse was suggested as a beneficial form of using the history and philosophy of science in the modules of learning materials developed within the History and Philosophy in Science Teaching project. The paper briefly describes the theoretical framework of the produced modules, addressing ontological and epistemological aspects of historical changes in physics knowledge with regard to several particular concepts relevant to school course of physics. It is argued that such excurses create Cultural Content Knowledge which improves the Pedagogical Content Knowledge in teachers and are appropriate to facilitate the meaningful learning by students. The modules illustrate the new aspect of the scientific knowledge not sufficiently addressed in the current science educational discourse??the constructive diachronic discourse that took place in the history. Historical excurse makes explicit the paradigmatic conceptual changes in physics knowledge and thus creates the space of learning in which the ??correct?? knowledge (type I) emerges in a discourse with the alternates (type II knowledge). Some of the previous conceptions show certain similarity to students?? misconceptions which further motivates essential use of both types of scientific knowledge to support the meaningful learning of physics curriculum. The epistemological aspects of the developed materials illuminate the nature of scientific knowledge and its major features: objectiveness and cumulative nature. Teachers found the developed modules interesting, important but challenging their background and requiring special preparation.  相似文献   

15.
This paper reports on the application of a constructivist-based teaching strategy with a small group of first-year physics students. Data collection and analysis procedures are discussed, and the responses of three students to three situations involving force concepts are presented. A number of issues relevant to conceptual change teaching strategies are identified. In addition to an emphasis on alternative conceptions, issues identified that require consideration when developing teaching strategies for conceptual change include an emphasis on understanding physics terminology, the development of a supportive learning environment and the use of a wide range of problem contexts. Specializations: physics education, alternative conceptions, conceptual change.  相似文献   

16.

This study begins the task of mapping out the domain of valid, potentially helpful beliefs of students and raises the possibility of drawing on these intuitions in teaching conceptual material. Some issues are explored surrounding the identification of such intuitions, referred to as anchoring conceptions or anchors. We attempt to: (1) propose some organizing theoretical and observational definitions of the anchor construct; (2) present some initial findings from a diagnostic test designed to uncover anchors for physics instruction; and (3) provoke an initial discussion of the new methodological issues that arise in this domain.

The results of the diagnostic test indicate that a number of group anchors exist. In addition, some unexpected non‐anchors were identified. Furthermore, evidence was found indicating that some anchoring examples may be ‘brittle’, i.e., evidence that the anchor could not be extended analogically to help a student make sense of a target situation.

Finally, it is suggested that further research is needed to construct a theory of anchoring conceptions that would, for example, specify what characteristics would indicate that an anchoring conception can provide the basis for conceptual change via analogical extension.  相似文献   

17.
Many studies into learners’ ideas in science have reported that aspects of learners’ thinking can be represented in terms of entities described in such terms as alternative conceptions or conceptual frameworks, which are considered to describe relatively stable aspects of conceptual knowledge that are represented in the learner’s memory and accessed in certain contexts. Other researchers have suggested that learners’ ideas elicited in research are often better understood as labile constructions formed in response to probes and generated from more elementary conceptual resources (e.g. phenomenological primitives or ‘p‐prims’). This ‘knowledge‐in‐pieces perspective’ (largely developed from studies of student thinking about physics topics), and the ‘alternative conceptions perspective’, suggests different pedagogic approaches. The present paper discusses issues raised by this area of work. Firstly, a model of cognition is considered within which the ‘knowledge‐in‐pieces’ and ‘alternative conceptions’ perspectives co‐exist. Secondly, this model is explored in terms of whether such a synthesis could offer fruitful insights by considering some candidate p‐prims from chemistry education. Finally, areas for developing testable predictions are outlined, to show how such a model can be a ‘refutable variant’ of a progressive research programme in learning science.  相似文献   

18.
Drawing on a study that explores university students’ experiences of doing laboratory work in physics, this article outlines a proposed conceptual framework for extending the exploration of the gendered experience of learning. In this framework situated cognition and post‐structural gender theory are merged together. By drawing on data that aim at exploring the gendered experience of learning in physics in the laboratory setting, a case is made for the proposed conceptual framework to facilitate an analysis of gender as an active process that relates the dynamics of this process to the emerging physicist identities of the students. In other words, this framework allows for an analysis of the gendered learning experiences in a context such as physics education that goes well beyond the usual ‘women‐friendly’ teaching approaches.  相似文献   

19.
In recent years, researchers have become aware of the experiential grounding of scientific thought. Accordingly, research has shown that metaphorical mappings between experience-based source domains and abstract target domains are omnipresent in everyday and scientific language. The theory of conceptual metaphor explains these findings based on the assumption that understanding is embodied. Embodied understanding arises from recurrent bodily and social experience with our environment. As our perception is adapted to a medium-scale dimension, our embodied conceptions originate from this mesocosmic scale. With respect to this epistemological principle, we distinguish between micro-, meso- and macrocosmic phenomena. We use these insights to analyse how external representations of phenomena in the micro- and macrocosm can foster learning when they (a) address the students’ learning demand by affording a mesocosmic experience or (b) assist reflection on embodied conceptions by representing their image schematic structure. We base our considerations on empirical evidence from teaching experiments on phenomena from the microcosm (microbial growth and signal conduction in neurons) and the macrocosm (greenhouse effect and carbon cycle). We discuss how the theory of conceptual metaphor can inform the development of external representations.  相似文献   

20.
Over the last 20 years, science education studies have reported that there are very different understandings among students of science regarding the key aspects of climate change. We used the cognitive linguistic framework of experientialism to shed new light on this valuable pool of studies to identify the conceptual resources of understanding climate change. In our study, we interviewed 35 secondary school students on their understanding of the greenhouse effect and analysed the conceptions of climate scientists as drawn from textbooks and research reports. We analysed all data by metaphor analysis and qualitative content analysis to gain insight into students' and scientists' resources for understanding. In our analysis, we found that students and scientists refer to the same schemata to understand the greenhouse effect. We categorised their conceptions into three different principles the conceptions are based on: warming by more input, warming by less output, and warming by a new equilibrium. By interrelating students' and scientists' conceptions, we identified the students' learning demand: First, our students were afforded with experiences regarding the interactions of electromagnetic radiation and CO2. Second, our students reflected about the experience-based schemata they use as source domains for metaphorical understanding of the greenhouse effect. By uncovering the—mostly unconscious—deployed schemata, we gave students access to their source domains. We implemented these teaching guidelines in interventions and evaluated them in teaching experiments to develop evidence-based and theory-guided learning activities on the greenhouse effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号