首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined changes in the science content representations of two prospective elementary teachers during their first year in an experimental teacher preparation program. Qualitative case study design guided data collection, organization, and analysis. Multiple forms of data, including audiotaped interviews, written documents, and videotaped teaching episodes, were collected across two complete cycles of planning, teaching, and reflection. Data on prospective teachers' content representations were analyzed for their accuracy, sequencing, and connectedness, as well as their attention to the needs of learners. Improvements in content representations were noted within each component of the cycles and across semesters. These changes appear to be closely related to prospective teachers' developing understanding of learners. Findings suggest that opportunities to engage in cycles of instruction guided by structured considerations for content representation contributed to the noted improvements. © 2000 John Wiley & Sons, Inc. J Res Sci Teach 37: 318–339, 2000.  相似文献   

2.
This study examined Malaysian science teachers' pedagogical content knowledge (PCK) of selected physics concepts. The two components of PCK investigated were (i) knowledge of students' understanding, conceptions and misconceptions of topics, and (ii) knowledge of strategies and representations for teaching particular topics. The participants were 12 trainee teachers from various academic science backgrounds attending a one-year postgraduate teacher-training course. They were interviewed on selected basic concepts in physics that are found in the Malaysian Integrated Science curriculum for lower secondary level. The findings showed that trainee teachers' PCK for promoting conceptual understanding is limited. They lacked the ability to transform their understanding of basic concepts in physics required to teach lower secondary school science pupils. The trainees' level of content knowledge affected their awareness of pupils' likely misconceptions. Consequently, the trainees were unable to employ the appropriate teaching strategies required to explain the scientific ideas. This study provides some pedagogical implications for the training of science teachers.  相似文献   

3.
This paper aimed to review, and assess the 'effectiveness' of the attempts undertaken to improve prospective and practising science teachers' conceptions of nature of science (NOS). The reviewed attempts could be categorized into two general approches: implicit and explicit. Implicit attempts utilized science process-skills instruction or engagement in science-based inquiry activities to improve science teachers' conceptions of NOS. To achieve the same goal, explicit attempts used instruction geared towards various aspects of NOS and/or instruction that utilized elements from history and philosophy of science. To the extent that teachers' NOS conceptions were faithfully assessed by the instruments used in the reviewed studies, the explicit approach was relatively more effective in enhancing teachers' views. The relative ineffectiveness of the implicit approach could be attributed to two inherent assumptions. The first is that developing an understanding of NOS is an 'affective', as compared to a 'cognitive', learning outcome. The second ensuing assumption is that learners would necessarily develop understandings of NOS as a by-product of engaging in science-realated activities. However, despite the relative 'effectiveness' of the explicit approach, much is still required in terms of fostering among science teachers 'desired' understandings of NOS. The paper emphasizes that explicitness and reflectivness should be given prominence in any future attempts aimed at improving teachers' concepts of NOS.  相似文献   

4.
This study explores two approaches to directly measuring the quality of instruction: teachers' assignments with student work and focused lesson observations. The technical quality and potential feasibility of these approaches for measuring instruction in large numbers of classrooms are compared within two different content areas (reading comprehension and mathematics). Generalizability and decision studies determined the optimal number of observations and assignments needed to obtain a reliable measure of a teacher's practice, and the association of these direct measures of instructional quality with student achievement was estimated. For both content areas, four assignments assessed by two raters yielded a reliable estimate of quality and as few as two observations yielded a reliable estimate of quality when teachers complied with the requirements of the research. The quality of observed instruction and teachers' assignments differentially predicted gains in students' achievement on the Stanford Achievement Test within each content area. The implications for measuring instruction “at-scale” in different content areas are discussed.  相似文献   

5.
The main purpose of this study was to investigate the effects of active learning on preservice teachers' dignity, energy, self-management, community, and awareness (DESCA) abilities, attitudes toward teaching, and attitudes toward science. Third year preservice teachers (n = 77) from two different classes were involved in the study. One intact class was assigned as the experimental group, whereas the other intact class was assigned as the comparison group. The comparison group students received the instruction by traditional teaching, and the experimental group received instruction through an active learning paradigm. DESCA abilities and attitudes were measured before and after instruction. Results revealed that there was a significant difference favoring the active learning instruction on preservice teachers' DESCA scores; however, there was no significant difference on preservice teachers' attitudes toward teaching and science.  相似文献   

6.
Recent instructional reforms in science education aim to change the way students engage in learning in the discipline, as they describe that students are to engage with disciplinary core ideas, crosscutting concepts, and the practices of science to make sense of phenomena (NRC, 2012). For such sensemaking to become a reality, there is a need to understand the ways in which students' thinking can be maintained throughout the trajectory of science lessons. Past research in this area tends to foreground either the curriculum or teachers' practices. We propose a more comprehensive view of science instruction, one that requires attention to teachers' practice, the instructional task, and students' engagement. In this study, by examining the implementation of the same lesson across three different classrooms, our analysis of classroom videos and artifacts of students' work revealed how the interaction of teachers' practices, students' intellectual engagement, and a cognitively demanding task together support rigorous instruction. Our analyses shed light on their interaction that shapes opportunities for students' thinking and sensemaking throughout the trajectory of a science lesson. The findings provide implications for ways to promote rigorous opportunities for students' learning in science classrooms.  相似文献   

7.
Since 1978 many studies have called for changes in the practices of science teaching. These changes in instruction will occur only when the teachers decide to change their practices. This study uses surveys to consider the question of what were the trends in the teachers' recommendations for changes in elementary and junior-high school science programs between the years of 1978 and 1982. Large samples of teachers in British Columbia, Canada, responded anonymously to questionnaires in these years: 3040 teachers in 1978 and 1631 in 1982, with return rates ranging from 77.5% to 85%. These teachers described themselves as shifting their classroom practices toward ones that emphasize passive learning and memorization. The British Columbia Science Assessments recommend more inservice programs to stop this trend. There were very few differences in the teachers' recommendations for changes in the schools. The elementary-school teachers had major changes in their rankings of only two activities: they increased their ranking of “activity-centered learning” and reduced their ranking of “outdoor education.”  相似文献   

8.
9.
This mixed‐methods investigation compared the relative impacts of instructional approach and context of nature of science instruction on preservice elementary teachers' understandings. The sample consisted of 75 preservice teachers enrolled in four sections of an elementary science methods course. Independent variables included instructional approach to teaching nature of science (implicit vs. explicit) and the context of nature of science instruction (as a stand‐alone topic vs. situated within instruction about global climate change and global warming). These treatments were randomly applied to the four class sections along a 2 × 2 matrix, permitting the comparison of outcomes for each independent variable separately and in combination to those of a control group. Data collection spanned the semester‐long course and included written responses to pre‐ and post‐treatment administrations of the VNOS‐B, semi‐structured interviews, and a variety of classroom artifacts. Qualitative methods were used to analyze the data with the goal of constructing profiles of participants' understandings of the nature of science and of global climate change /global warming (GCC/GW). These profiles were compared across treatments using non‐parametric statistics to assess the relative effectiveness of the four instructional approaches. Results indicated that preservice teachers who experienced explicit instruction about the nature of science made statistically significant gains in their views of nature of science regardless of whether the nature of science instruction was situated within the context of GCC/GW or as a stand‐alone topic. Further, the participants who experienced explicit nature of science instruction as a stand‐alone topic were able to apply their understandings of nature of science appropriately to novel situations and issues. We address the implications of these results for teaching the nature of science in teacher preparation courses. © 2010 Wiley Periodicals, Inc., Inc. J Res Sci Teach 48: 414–436, 2011  相似文献   

10.
11.
Fostering students' spatial thinking skills holds great promise for improving Science, Technology, Engineering, and Mathematics (STEM) education. Recent efforts have focused on the development of classroom interventions to build students' spatial skills, yet these interventions will be implemented by teachers, and their beliefs and perceptions about spatial thinking influence the effectiveness of such interventions. However, our understanding of elementary school teachers' beliefs and perceptions around spatial thinking and STEM is in its infancy. Thus, we created novel measures to survey elementary teachers' anxiety in solving spatial problems, beliefs in the importance of spatial thinking skills for students' academic success, and self-efficacy in cultivating students' spatial skills during science instruction. All measures exhibited high internal consistency and showed that elementary teachers experience low anxiety when solving spatial problems and feel strongly that their skills can improve with practice. Teachers were able to identify educational problems that rely on spatial problem-solving and believed that spatial skills are more important for older compared to younger students. Despite reporting high efficacy in their general teaching and science teaching, teachers reported significantly lower efficacy in their capacities to cultivate students' spatial skills during science instruction. Results were fairly consistent across teacher characteristics (e.g., years of experience and teaching role as generalist or specialist) with the exception that only years of teaching science was related to teachers' efficacy in cultivating students' spatial thinking skills during science instruction. Results are discussed within the broader context of teacher beliefs, self-efficacy, and implications for professional development research.  相似文献   

12.
The idea of using science notebooks as a classroom assessment tool is not new. There is general agreement that science notebooks allow teachers to assess students' conceptual and procedural understanding and to provide the feedback students need for improving their performance. In this study we examined the use of science notebooks as an unobtrusive assessment tool that can also be used by individuals outside the classroom (for example, school district personnel), and as a means for obtaining information about students' learning and their opportunities to learn. More specifically, in this study students' science notebooks were used as a source of data about the (a) implementation of a curriculum's intended activities, (b) students' performance, and (c) quality of teachers' feedback. Our results indicated that: (1) Students' science notebooks can be reliably scored. Unit implementation, student performance, and teacher feedback scores were highly consistent across raters and units. (2) High and positive correlations with other performance assessment scores indicated that the student performance score can be considered as an achievement indicator. And (3) low performance scores across the two units revealed that students' communication skills and understanding were far away from the maximum score and did not improve over the course of instruction during the school year. This result may be due, in part, to the fact that no teacher feedback was found in any of the students' notebooks across the six classrooms studied. This may reflect some characteristics of the teachers' assessment practices that may require further professional development.  相似文献   

13.
The purpose of this study was to determine whether third-grade teachers' instructional actions during reading comprehension lessons contributed to their students' reading comprehension achievement. Our framework focused on teachers' emphasis on three dimensions of instruction (pedagogical structure, teacher-directed instruction, and support for student learning), as observed in comprehension lessons across a year. Third-grade teachers' instruction was analyzed first by measuring their latent propensity to engage in instructional actions in the three dimensions and then by using these latent variables in a multilevel model to examine their students' gains in reading comprehension. Results provided support for the theoretical dimensions, taking into account contextual variables including lesson, student, and teacher characteristics; teachers' engagement in teacher-directed instruction and their support for student learning significantly contributed to their students' reading comprehension. Results suggest that analysis of teachers' instructional actions within and across lessons is a promising approach for the study of effective reading instruction.  相似文献   

14.
The present study ascertains the relationship between socioeconomic status (SES) and students' science self-efficacy using data involving 509,182 15-year-old students and 17,678 school principals in 69 countries/regions who participated in the Programme for International Student Assessment (PISA) 2015. Hierarchical linear modelling results show that, after controlling for science teachers' instructional practices (science class disciplinary climate, inquiry-based instruction, teachers' support, direct instruction, provision of feedback, instructional adaptation), school science resources and various student variables (gender, grade levels, type of school programme), SES was related to students' science self-efficacy in the majority of countries/regions (62–68 countries/regions, depending on the SES indicators used). Specifically, SES was related to students' science self-efficacy in a larger number of countries/regions when it was measured using home cultural resources, home educational resources or a composite indicator (economic, social and cultural status) than when it was measured using parental education levels or occupational status. In contrast, students' science self-efficacy was unrelated to the science teachers' instructional practices examined (except inquiry-based instruction) in most of the countries/regions. These results expand our understanding of students' science self-efficacy, as a type of learning motivation, from being a largely psychological attribute to one that is also influenced by social origins such as family SES. They imply that SES may have a larger influence on student achievement than we may have assumed if we include the indirect influence of SES on student achievement via students' self-efficacy.  相似文献   

15.
The goal of this research is to identify science teachers' beliefs and conceptions that play an important role in shaping their understandings of and attempts to enact inclusive science teaching practices. We examined the work products, both informal (online discussions, email exchanges) and formal (papers, unit plans, peer reviews), of 14 teachers enrolled in a master's degree course focused on diversity in science teaching and learning. These emerging understandings were member-checked via a series of interviews with a subset of these teachers. Our analysis was conducted in two stages: (1) describing the difficulties the teachers identified for themselves in their attempts to teach science to a wide range of students in their classes and (2) analyzing these self-identified barriers for underlying beliefs and conceptions that serve to prohibit or allow for the teachers' understanding and enactment of equitable science instruction. The teachers' self-identified barriers were grouped into three categories: students, broader social infrastructure, and self. The more fundamental barriers identified included teacher beliefs about the ethnocentrism of the mainstream, essentialism/individualism, and beliefs about the meritocracy of schooling. The implications of these hurdles for science teacher education are discussed.  相似文献   

16.
Understanding the interaction between internally constructed and externally imposed aspects of the teaching context may be the missing link between calls for school reform and teachers' interpretation and implementation of that reform. Although the context of the local school culture has a profound impact on teachers, there are other external forces that are specifically aimed at influencing teachers' pedagogical and curricular decisions. These externally imposed aspects of context include some of the existing tools of reform, such as national standards, mandated state core curricula, and related criterion‐referenced testing. However, little is known about how these reform tools impact teachers' thinking about science and science teaching or how teachers respond to such tools. This study examined the interactions between individual teachers' beliefs about teaching and learning science in elementary school and the tools of reform that are imposed upon them. Comparative case studies were conducted in which two elementary teachers' science instruction, teaching context, and related beliefs were examined, described, and analyzed. In this study, the teachers' fundamental beliefs about science and what it means to teach and learn science influenced their interpretations of the sometimes contradictory messages of reform as they are represented in the standards, mandated curriculum, and end‐of‐level tests. Suggestions about what these findings mean for needed aspects of teacher professional development are offered. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 44: 396–423, 2007  相似文献   

17.
This article explores school leadership for elementary school science teaching in an urban setting. We examine how school leaders bring resources together to enhance science instruction when there appear to be relatively few resources available for it. From our study of 13 Chicago elementary (K–8) schools' efforts to lead instructional change in mathematics, language arts, and science education, we show how resources for leading instruction are unequally distributed across subject areas. We also explore how over time leaders in one school successfully identified and activated resources for leading change in science education. The result has been a steady, although not always certain, development of science as an instructional area in the school. We argue that leading change in science education involves the identification and activation of material resources, the development of teachers' and school leaders' human capital, and the development and use of social capital. © 2001 John Wiley & Sons, Inc. J Res Sci Teach 38: 918–940, 2001  相似文献   

18.

In-depth analysis of science teachers' idiosyncratic instructional behaviors combined with the notion of deliberated 'teacher reflection' as a means of improving professional teaching practice has become one of the most pervasive concepts to influence science teacher education during the past decade. Sweeney and coworkers have described how the notion of teacher reflection and Lytle and Cochran-Smith's typology of teacher research were utilised to examine the relationships between a beginning high school chemistry teacher's articulated personal practice theories and his actions as demonstrated by his curricular decisions and instructional practices. Using data drawn from the previous study, this report focuses on examining how the methodological approach taken in the investigation (explicit, deliberate articulation and analysis of a teacher's instructional behaviors and rationales within the context of a mentoring relationship) may serve as a useful model for teacher professional development across all areas of instruction.  相似文献   

19.
The last two decades have witnessed the gradual implementation of integrated science curriculum at the junior secondary level in China. However, in most provinces of China, the implementation is not as successful as expected. Challenges were reported, yet without fine-grained investigation, with respect to science teachers' instruction on integrated science. In this study, we aim to detect major problems by investigating the instruction of integrated science at the secondary level. Classroom observation focused on the teacher and student verbal behavior, teachers' competency of instructional organization, their presentation of instructional content, and the organization of learning activities. Findings revealed that students were provided with limited opportunities for participating and engaging in learning as science teachers were dominant in classroom talk. Teachers emphasized on the integration of knowledge within one subject (within-subject knowledge), but not the integration of knowledge between subjects (cross-subject knowledge), resulting in the unsuccessful instruction of the integrative content. What is more, teachers were inadequately competent in designing and delivering science, technology and society content, scientific inquiry and scientific experiments, which also affected the quality of instruction on integrated science.  相似文献   

20.
This study investigated a professional development model designed to improve teachers' inquiry teaching efficacy as well as the quality of their inquiry instruction through engaging teachers in practice-teaching and reflection sessions. The programme began with a two-week summer Institute focused on both inquiry pedagogy and science content and continued with academic year support for participants' inquiry implementation. An inquiry teaching efficacy instrument was administered 3 times to 25 teacher participants to gauge changes in their personal self-efficacy and outcome expectancy across 5 essential features of classroom inquiry. To examine actual practices, pre/post classroom observations of the teachers' inquiry enactments were evaluated using a quality of inquiry observation protocol. Following the summer Institute, teachers had statistically significant increases in their self-efficacy for teaching inquiry in four of the five essential features and increases in one of the five essential features for outcome expectancy. Teachers' quality of inquiry teaching also increased after the professional development programme. We discuss implications of this PD model for moving teachers towards implementation of new instructional techniques as well as the influence of a supportive school community on teachers’ efficacy with inquiry instruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号