首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The AC electrothermal technique is very promising for biofluid micropumping, due to its ability to pump high conductivity fluids. However, compared to electroosmotic micropumps, a lack of high fluid flow is a disadvantage. In this paper, a novel AC multiple array electrothermal (MAET) micropump, utilizing multiple microelectrode arrays placed on the side-walls of the fluidic channel of the micropump, is introduced. Asymmetric coplanar microelectrodes are placed on all sides of the microfluidic channel, and are actuated in different phases: one, two opposing, two adjacent, three, or all sides at the same time. Micropumps with different combinations of side electrodes and cross sections are numerically investigated in this paper. The effect of the governing parameters with respect to thermal, fluidic, and electrical properties are studied and discussed. To verify the simulations, the AC MAET concept was then fabricated and experimentally tested. The resulted fluid flow achieved by the experiments showed good agreement with the corresponding simulations. The number of side electrode arrays and the actuation patterns were also found to greatly influence the micropump performance. This study shows that the new multiple array electrothermal micropump design can be used in a wide range of applications such as drug delivery and lab-on-a-chip, where high flow rate and high precision micropumping devices for high conductivity fluids are needed.  相似文献   

2.
Blood viscosity has been considered as one of important biophysical parameters for effectively monitoring variations in physiological and pathological conditions of circulatory disorders. Standard previous methods make it difficult to evaluate variations of blood viscosity under cardiopulmonary bypass procedures or hemodialysis. In this study, we proposed a unique microfluidic device for simultaneously measuring viscosity and flow rate of whole blood circulating in a complex fluidic network including a rat, a reservoir, a pinch valve, and a peristaltic pump. To demonstrate the proposed method, a twin-shaped microfluidic device, which is composed of two half-circular chambers, two side channels with multiple indicating channels, and one bridge channel, was carefully designed. Based on the microfluidic device, three sequential flow controls were applied to identify viscosity and flow rate of blood, with label-free and sensorless detection. The half-circular chamber was employed to achieve mechanical membrane compliance for flow stabilization in the microfluidic device. To quantify the effect of flow stabilization on flow fluctuations, a formula of pulsation index (PI) was analytically derived using a discrete fluidic circuit model. Using the PI formula, the time constant contributed by the half-circular chamber is estimated to be 8 s. Furthermore, flow fluctuations resulting from the peristaltic pumps are completely removed, especially under periodic flow conditions within short periods (T < 10 s). For performance demonstrations, the proposed method was applied to evaluate blood viscosity with respect to varying flow rate conditions [(a) known blood flow rate via a syringe pump, (b) unknown blood flow rate via a peristaltic pump]. As a result, the flow rate and viscosity of blood can be simultaneously measured with satisfactory accuracy. In addition, the proposed method was successfully applied to identify the viscosity of rat blood, which circulates in a complex fluidic network. These observations confirm that the proposed method can be used for simultaneous measurement of viscosity and flow rate of whole blood circulating in the complex fluid network, with sensorless and label-free detection. Furthermore, the proposed method will be used in evaluating variations in the viscosity of human blood during cardiopulmonary bypass procedures or hemodialysis.  相似文献   

3.
To sequentially handle fluids is of great significance in quantitative biology, analytical chemistry, and bioassays. However, the technological options are limited when building such microfluidic sequential processing systems, and one of the encountered challenges is the need for reliable, efficient, and mass-production available microfluidic pumping methods. Herein, we present a bubble-free and pumping-control unified liquid handling method that is compatible with large-scale manufacture, termed multilayer microfluidic sample isolated pumping (mμSIP). The core part of the mμSIP is the selective permeable membrane that isolates the fluidic layer from the pneumatic layer. The air diffusion from the fluidic channel network into the degassing pneumatic channel network leads to fluidic channel pressure variation, which further results in consistent bubble-free liquid pumping into the channels and the dead-end chambers. We characterize the mμSIP by comparing the fluidic actuation processes with different parameters and a flow rate range of 0.013 μl/s to 0.097 μl/s is observed in the experiments. As the proof of concept, we demonstrate an automatic sequential fluid handling system aiming at digital assays and immunoassays, which further proves the unified pumping-control and suggests that the mμSIP is suitable for functional microfluidic assays with minimal operations. We believe that the mμSIP technology and demonstrated automatic sequential fluid handling system would enrich the microfluidic toolbox and benefit further inventions.  相似文献   

4.
Particle focusing is an essential step in a wide range of applications such as cell counting and sorting. Recently, viscoelastic particle focusing, which exploits the spatially non-uniform viscoelastic properties of a polymer solution under Poiseuille flow, has attracted much attention because the particles are focused along the channel centerline without any external force. Lateral particle migration in polymer solutions in square channels has been studied due to its practical importance in lab-on-a-chip applications. However, there are still many questions about how the rheological properties of the medium alter the equilibrium particle positions and about the flow rate ranges for particle focusing. In this study, we investigated lateral particle migration in a viscoelastic flow of DNA solution in a square microchannel. The elastic property is relevant due to the long relaxation time of a DNA molecule, even when the DNA concentration is extremely low. Further, the shear viscosity of the solution is essentially constant irrespective of shear rate. Our current results demonstrate that the particles migrate toward the channel centerline and the four corners of a square channel in the dilute DNA solution when the inertia is negligible (elasticity-dominant flow). As the flow rate increases, the multiple equilibrium particle positions are reduced to a single file along the channel centerline, due to the elasto-inertial particle focusing mechanism. The current results support that elasto-inertial particle focusing mechanism is a universal phenomenon in a viscoelastic fluid with constant shear viscosity (Boger fluid). Also, the effective flow rate ranges for three-dimensional particle focusing in the DNA solution were significantly higher and wider than those for the previous synthetic polymer solution case, which facilitates high throughput analysis of particulate systems. In addition, we demonstrated that the DNA solution can be applied to focus a wide range of particle sizes in a single channel and also align red blood cells without any significant deformation.  相似文献   

5.
Optical chromatography involves the elegant combination of opposing optical and fluid drag forces on colloidal samples within microfluidic environments to both measure analytical differences and fractionate injected samples. Particles that encounter the focused laser beam are trapped axially along the beam and are pushed upstream from the laser focal point to rest at a point where the optical and fluid forces on the particle balance. In our recent devices particles are pushed into a region of lower microfluidic flow, where they can be retained and fractionated. Because optical and fluid forces on a particle are sensitive to differences in the physical and chemical properties of a sample, separations are possible. An optical chromatography beam focused to completely fill a fluid channel is operated as an optically tunable filter for the separation of inorganic, polymeric, and biological particle samples. We demonstrate this technique coupled with an advanced microfluidic platform and show how it can be used as an effective method to fractionate particles from an injected multicomponent sample. Our advanced three-stage microfluidic design accommodates three lasers simultaneously to effectively create a sequential cascade optical chromatographic separation system.  相似文献   

6.
We demonstrate a valve-less microfluidic peristaltic pumping method which enables the delivery of continuous nanoliter-scale flow with high precision. The fluid is driven by squeezing the microchannels embedded in a poly(dimethylsiloxane) device with rolling cams or bearings. We achieve continuous and uniform flow with velocity range from 1 to 500 nl/s, with outflow volume error within 3 nl. The devices show enhanced backpressure resistance up to 340 kPa. This method also shows great flexibility. By altering the channels'' layout, emulsions and plugs can be generated easily. These low-cost and easy-to-fabricate micro-pumps offer novel approaches for liquid actuation in various microfluidic applications.  相似文献   

7.
Measurement and control of pressure-driven flow (PDF) has a great potential to enhance the performance of chemical and biological experiments in Lab on a Chip technology. In this paper, we present an optofluidic flow sensor for real-time measurement and control of PDF. The optofluidic flow sensor consists of an on-chip micro Venturi and two optical Fabry-Pérot (FP) interferometers. Flow rate was measured from the fringe shift of FP interferometers resulted from movement fluid in the on-chip micro Venturi. The experimental results show that the optofluidic flow sensor has a minimum detectable flow change of 5 nl/min that is suitable for real time monitoring and control of fluids in many chemical and biological experiments. A Finite Element Method is used to solve the three dimensional (3D) Navier–Stokes and continuity equations to validate the experimental results.  相似文献   

8.
The bubble-free and pulse-free fluid delivery is critical to reliable operation of microfluidic devices. In this study, we propose a new method for stable bubble-free and pulse-free fluid delivery in a microfluidic device. Gas bubbles are separated from liquid by using the density difference between liquid and gas in a closed cavity. The pulsatile flow caused by a peristaltic pump is stabilized via gas compressibility. To demonstrate the proposed method, a fluidic chamber which is composed of two needles for inlet and outlet, one needle for a pinch valve and a closed cavity is carefully designed. By manipulating the opening or closing of the pinch valve, fluids fill up the fluidic chamber or are delivered into a microfluidic device through the fluidic chamber in a bubble-free and pulse-free manner. The performance of the proposed method in bubble-free and pulse-free fluid delivery is quantitatively evaluated. The proposed method is then applied to monitor the temporal variations of fluidic flows of rat blood circulating within a complex fluidic network including a rat, a pinch valve, a reservoir, a peristaltic pump, and the microfluidic device. In addition, the deformability of red blood cells and platelet aggregation are quantitatively evaluated from the information on the temporal variations of blood flows in the microfluidic device. These experimental demonstrations confirm that the proposed method is a promising tool for stable, bubble-free, and pulse-free supply of fluids, including whole blood, into a microfluidic device. Furthermore, the proposed method will be used to quantify the biophysical properties of blood circulating within an extracorporeal bypass loop of animal models.  相似文献   

9.
We utilize a recently developed microfluidic device, the Optimized Shape Cross-slot Extensional Rheometer (OSCER), to study the elongational flow behavior and rheological properties of hyaluronic acid (HA) solutions representative of the synovial fluid (SF) found in the knee joint. The OSCER geometry is a stagnation point device that imposes a planar extensional flow with a homogenous extension rate over a significant length of the inlet and outlet channel axes. Due to the compressive nature of the flow generated along the inlet channels, and the planar elongational flow along the outlet channels, the flow field in the OSCER device can also be considered as representative of the flow field that arises between compressing articular cartilage layers of the knee joints during running or jumping movements. Full-field birefringence microscopy measurements demonstrate a high degree of localized macromolecular orientation along streamlines passing close to the stagnation point of the OSCER device, while micro-particle image velocimetry is used to quantify the flow kinematics. The stress-optical rule is used to assess the local extensional viscosity in the elongating fluid elements as a function of the measured deformation rate. The large limiting values of the dimensionless Trouton ratio, Tr ∼ O(50), demonstrate that these fluids are highly extensional-thickening, providing a clear mechanism for the load-dampening properties of SF. The results also indicate the potential for utilizing the OSCER in screening of physiological SF samples, which will lead to improved understanding of, and therapies for, disease progression in arthritis sufferers.  相似文献   

10.
Song W  Psaltis D 《Biomicrofluidics》2011,5(4):44110-4411011
We present a novel image-based method to measure the on-chip microfluidic pressure and flow rate simultaneously by using the integrated optofluidic membrane interferometers (OMIs). The device was constructed with two layers of structured polydimethylsiloxane (PDMS) on a glass substrate by multilayer soft lithography. The OMI consists of a flexible air-gap optical cavity which upon illumination by monochromatic light generates interference patterns that depends on the pressure. These interference patterns were captured with a microscope and analyzed by computer based on a pattern recognition algorithm. Compared with the previous techniques for pressure sensing, this method offers several advantages including low cost, simple fabrication, large dynamic range, and high sensitivity. For pressure sensing, we demonstrate a dynamic range of 0-10 psi with an accuracy of ±2% of full scale. Since multiple OMIs can be integrated into a single chip for detecting pressures at multiple locations simultaneously, we also demonstrated a microfluidic flow sensing by measuring the differential pressure along a channel. Thanks to the simple fabrication that is compatible with normal microfluidics, such OMIs can be easily integrated into other microfluidic systems for in situ fluid monitoring.  相似文献   

11.
Paper-based microfluidics are an increasingly popular alternative to devices with conventional open channel geometries. The low cost of fabrication and the absence of external instrumentation needed to drive paper microchannels make them especially well suited for medical diagnostics in resource-limited settings. Despite the advantages of paper microfluidics, many assays performed using conventional open channel microfluidics are challenging to translate onto paper, such as bead, emulsion, and cell-based assays. To overcome this challenge, we have developed a hybrid open-channel/paper channel microfluidic device. In this design, wick-driven paper channels control the flow rates within conventional microfluidics. We fabricate these hybrid chips using laser-micromachined polymer sheets and filter paper. In contrast to previous efforts that utilized external, macroscopic paper-based pumps, we integrated micro-scale paper and open channels onto a single chip to control multiple open channels and control complex laminar flow-pattern within individual channels. We demonstrated that flow patterns within the open channels can be quantitatively controlled by modulating the geometry of the paper channels, and that these flow rates agree with Darcy''s law. The utility of these hybrid chips, for applications such as bead-, cell-, or emulsion-based assays, was demonstrated by constructing a hybrid chip that hydrodynamically focused micrometer-sized polystyrene beads stably for >10 min, as well as cells, without external instrumentation to drive fluid flow.  相似文献   

12.
In this work, we demonstrate the use of a thin, self adherent, and clinically durable patch device that can collect fluid from a wound site for analysis. This device is manufactured from laminated silicone layers using a novel all-silicone double-molding process. In vitro studies for flow and delivery were followed by a clinical demonstration for exudate collection efficiency from a clinically presented partial thickness burn. The demonstrated utility of this device lends itself for use as a research implement used to clinically sample wound exudate for analysis. This device can serve as a platform for future integration of wearable technology into wound monitoring and care. The demonstrated fabrication method can be used for devices requiring thin membrane construction.  相似文献   

13.
In this paper, we demonstrate the possibility to trap and sort labeled cells under flow conditions using a microfluidic device with an integrated flat micro-patterned hard magnetic film. The proposed technique is illustrated using a cell suspension containing a mixture of Jurkat cells and HEK (Human Embryonic Kidney) 293 cells. Prior to sorting experiments, the Jurkat cells were specifically labeled with immunomagnetic nanoparticles, while the HEK 293 cells were unlabeled. Droplet-based experiments demonstrated that the Jurkat cells were attracted to regions of maximum stray field flux density while the HEK 293 cells settled in random positions. When the mixture was passed through a polydimethylsiloxane (PDMS) microfluidic channel containing integrated micromagnets, the labeled Jurkat cells were selectively trapped under fluid flow, while the HEK cells were eluted towards the device outlet. Increasing the flow rate produced a second eluate much enriched in Jurkat cells, as revealed by flow cytometry. The separation efficiency of this biocompatible, compact micro-fluidic separation chamber was compared with that obtained using two commercial magnetic cell separation kits.  相似文献   

14.
Integration of microfluidic devices with pressure-driven, self-powered fluid flow propulsion methods has provided a very effective solution for on-chip, droplet blood testing applications. However, precise understanding of the physical process governing fluid dynamics in polydimethylsiloxane (PDMS)-based microfluidic devices remains unclear. Here, we propose a pressure-driven diffusion model using Fick''s law and the ideal gas law, the results of which agree well with the experimental fluid dynamics observed in our vacuum pocket-assisted, self-powered microfluidic devices. Notably, this model enables us to precisely tune the flow rate by adjusting two geometrical parameters of the vacuum pocket. By linking the self-powered fluid flow propulsion method to the sedimentation, we also show that direct plasma separation from a drop of whole blood can be achieved using only a simple construction without the need for external power sources, connectors, or a complex operational procedure. Finally, the potential of the vacuum pocket, along with a removable vacuum battery to be integrated with non-PDMS microfluidic devices to drive and control the fluid flow, is demonstrated.  相似文献   

15.
Liu Y  Hartono D  Lim KM 《Biomicrofluidics》2012,6(1):12802-1280214
This paper presents a two-stream microfluidic system for transporting cells or micro-sized particles from one fluid stream to another by acoustophoresis. The two fluid streams, one being the original suspension and the other being the destination fluid, flow parallel to each other in a microchannel. Using a half-wave acoustic standing wave across the channel width, cells or particles with positive acoustic contrast factors are moved to the destination fluid where the pressure nodal line lies. By controlling the relative flow rate of the two fluid streams, the pressure nodal line can be maintained at a specific offset from the fluid interface within the destination fluid. Using this transportation method, particles or cells of different sizes and mechanical properties can be separated. The cells experiencing a larger acoustic radiation force are separated and transported from the original suspension to the destination fluid stream. The other particles or cells experiencing a smaller acoustic radiation force continue flowing in the original solution. Experiments were conducted to demonstrate the effective separation of polystyrene microbeads of different sizes (3 μm and 10 μm) and waterborne parasites (Giardia lamblia and Cryptosporidium parvum). Diffusion occurs between the two miscible fluids, but it was found to have little effects on the transport and separation process, even when the two fluids have different density and speed of sound.  相似文献   

16.
The emerging concept of thread-based microfluidics has shown great promise for application to inexpensive disease detection and environmental monitoring. To allow the creation of more sophisticated and functional thread-based sensor designs, the ability to better control and understand the flow of fluids in the devices is required. To meet this end, various mechanisms for controlling the flow of reagents and samples in thread-based microfluidic devices are investigated in this study. A study of fluid penetration in single threads and in twined threads provides greater practical understanding of fluid velocity and ultimate penetration for the design of devices. “Switches” which control when or where flow can occur, or allow the mixing of multiple fluids, have been successfully prototyped from multifilament threads, plastic films, and household adhesive. This advancement allows the fabrication of more functional sensory devices which can incorporate more complex detection chemistries, while maintaining low production cost and simplicity of construction.  相似文献   

17.
A microfluidic dynamic fluorescence-activated interface control system was developed for lab-on-a-chip applications. The system consists of a straight rectangular microchannel, a fluorescence excitation source, a detection sensor, a signal conversion circuit, and a high-voltage feedback system. Aqueous NaCl as conducting fluid and aqueous glycerol as nonconducting fluid were introduced to flow side by side into the straight rectangular microchannel. Fluorescent dye was added to the aqueous NaCl to work as a signal representing the interface position. Automatic control of the liquid interface was achieved by controlling the electroosmotic effect that exists only in the conducting fluid using a high-voltage feedback system. A LABVIEW program was developed to control the output of high-voltage power supply according the actual interface position, and then the interface position is modified as the output of high-voltage power supply. At last, the interface can be moved to the desired position automatically using this feedback system. The results show that the system presented in this paper can control an arbitrary interface location in real time. The effects of viscosity ratio, flow rates, and polarity of electric field were discussed. This technique can be extended to switch the sample flow and droplets automatically.  相似文献   

18.
本文基于NI Multisim 11.0的模拟仿真功能,以彩灯控制电路为例,对其时钟信号产生电路、顺序脉冲产生电路、彩灯驱动电路、直流电源和加/减计数控制电路几个功能模块进行仿真分析。事实证明,Multisim对于激发电子类及计算机类学生的自主学习兴趣,提高本科生的理论与实践结合能力具有积极的指导和促进作用。  相似文献   

19.
The flow focusing is a fundamental prior step in order to sort, analyze, and detect particles or cells. The standard hydrodynamic approach requires two fluids to be injected into the microfluidic device: one containing the sample and the other one, called the sheath fluid, allows squeezing the sample fluid into a narrow stream. The major drawback of this approach is the high complexity of the layout for microfluidic devices when parallel streams are required. In this work, we present a novel parallelized microfluidic device that enables hydrodynamic focusing in each microchannel using a single feed flow. At each of the parallel channels, a cross-filter region is present that allows removing fluid from the sample fluid. This fluid is used to create local sheath fluids that hydrodynamically pinch the sample fluid. The great advantage of the proposed device is that, since only one inlet is needed, multiple parallel micro-channels can be easily introduced into the design. In the paper, the design method is described and the numerical simulations performed to define the optimal design are summarized. Moreover, the operational functionality of devices tested by using both polystyrene beads and Acute Lymphoid Leukemia cells are shown.  相似文献   

20.
We present a microfluidic device designed for maintenance and culture of non-adherent mammalian cells, which enables both recirculation and refreshing of medium, as well as easy harvesting of cells from the device. We demonstrate fabrication of a novel microfluidic device utilizing Braille perfusion for peristaltic fluid flow to enable switching between recirculation and refresh flow modes. Utilizing fluid flow simulations and the human promyelocytic leukemia cell line, HL-60, non-adherent cells, we demonstrate the utility of this RECIR-REFRESH device. With computer simulations, we profiled fluid flow and concentration gradients of autocrine factors and found that the geometry of the cell culture well plays a key role in cell entrapping and retaining autocrine and soluble factors. We subjected HL-60 cells, in the device, to a treatment regimen of 1.25% dimethylsulfoxide, every other day, to provoke differentiation and measured subsequent expression of CD11b on day 2 and day 4 and tumor necrosis factor-alpha (TNF-α) on day 4. Our findings display perfusion sensitive CD11b expression, but not TNF-α build-up, by day 4 of culture, with a 1:1 ratio of recirculation to refresh flow yielding the greatest increase in CD11b levels. RECIR-REFRESH facilitates programmable levels of cell differentiation in a HL-60 non-adherent cell population and can be expanded to other types of non-adherent cells such as hematopoietic stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号