首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
与LiFePO4相比,单斜结构的磷酸钒锂(Li3V2(PO4)3)具有更高的Li+扩散系数和更高的放电电压、能量密度和高的比容量,已成为锂离子电池正极材料的研究热点之一,且被认为是新一代的高容量产业化电池材料。综述了近年来Li3V2(PO4)3的主要合成方法、充放电机理及其改性的研究现状,并且对Li3V2(PO4)3的发展趋势进行了展望。采用球磨辅助碳热还原法制备锂离子正极材料Li3V2(PO4)3,并通过金属离子掺杂技术对Li3V2(PO4)3进行改性。实验结果表明:掺杂少量的Fe后,材料放电容量增大且循环性能更好。  相似文献   

2.
以乳酸锂兼做锂源和碳源,通过高温固相反应制备锂离子电池Li3V2(PO4)3/C复合正极材料.研究一次球磨混合原料和原料预分解后的二次球磨处理对复合材料晶体结构、颗粒尺寸、颗粒分散性和电化学性能的影响.结果表明,相比一次球磨,经过二次球磨处理制备的Li3V2(PO4)3/C复合材料具有更小的颗粒尺寸和更高的颗粒分散性,...  相似文献   

3.
采用固相反应法制备碳包覆的磷酸钒锂材料,研究不同的柠檬酸添加量以及一次球磨前后加入顺序对磷酸钒锂性能的影响.通过X射线衍射(XRD)、扫描电子显微镜(SEM)、电池测试仪、电化学工作站等测试方法对Li_3V_2(PO4)_3/C复合正极材料的晶体结构、形貌特征、电化学性能、动力学性能做了分析.结果表明:柠檬酸的添加量以及柠檬酸加入顺序对磷酸钒锂复合材料的电化学性能有明显的影响.当一次球磨之前添加柠檬酸且其量与钒的摩尔比为1时得到的磷酸钒锂复合材料具有最佳的性能,电化学性能测试显示,在电压3.0~4.3 V范围内0.5 C倍率时,放电比容量达到128 mAh·g~(-1)(理论比容量为133 mAh·g~(-1)),并且当倍率达到10 C时,放电比容量仍有105 mAh·g~(-1),甚至当倍率达到20 C时,放电比容量仍高达95 mAh·g~(-1),循环伏安法和交流阻抗分析显示出有较好的离子扩散率和较小的阻抗.  相似文献   

4.
采用共沉淀制备前驱体,微波高温固相烧结制备富锂正极材料0.5Li2Mn O3·0.5Li Ni1/3Co1/3Mn1/3O2.通过X射线衍射(XRD)、电镜扫描SEM、循环伏安(CV)、充放电性能等材料结构的表征和电化学性能测试,研究了不同烧结时间(微波3 min、5 min、7 min、15 min)对材料结构电化学性能的影响.发现较佳的合成条件所合成的富锂正极材料0.5Li2Mn O3·0.5 Li Ni1/3Co1/3Mn1/3O2结构是α-Na Fe O2型,为二维层状结构.在2.0~4.8 V的截止电压范围、17 m Ah·g-1的电流密度,首次放电容量为284.6 m Ah·g-1,20个循环容量的保有率为75.6%.通过微波高温烧结合成正极材料,研究了制备工艺对材料结构和电化学性能的影响,并探讨了该体系的应用前景.  相似文献   

5.
以共沉淀氢氧化物Ni1/3Co1/3Mn1/3(OH)2和LiOH·H2O为原料,研究了其恒电流充放电测试显示,在2.8~4.4 V电压区间,流变相反应法合成的材料首次放电比容量高(达到170 mAh/g),循环性能好.充放电循环40次后,放电比容量为145 mAh/g,容量保持率达85.3%.循环伏安实验表明,材料的结构在循环过程中保持稳定.  相似文献   

6.
以共沉淀氢氧化物Ni1/3Co1/3Mn1/3(OH)2和LiOH·H2O为原料,研究了其恒电流充放电测试显示,在2.8~4.4V电压区间,流变相反应法合成的材料首次放电比容量高(达到170mAh/g),循环性能好.充放电循环40次后,放电比容量为145mAh/g,容量保持率达85.3%.循环伏安实验表明,材料的结构在循环过程中保持稳定.  相似文献   

7.
采用高温固相法合成锂离子电池用LiCoPO4/C复合正极材料.通过X射线衍射(XRD)和扫描电镜(SEM)对材料的微观结构和表面形貌进行分析.电化学测试结果表明,在0.1 C倍率下,LiCoPO4/C首次放电容量达到75 mAh·g-1,50次循环容量保持92%.  相似文献   

8.
成功制备了氧缺陷型Sb2O3-x/rGO复合材料.与纯Sb2O3材料相比,Sb2O3-x/rGO复合材料颗粒尺寸大大减小,导电性能得到提高,作为锂离子电池的负极材料,具有更高的可逆能力、更好的循环稳定性和良好的倍率性能.在电流密度为100 mAh·g^-1的情况下,Sb2O3-x/rGO复合材料的初始放电容量可达1336.6 mAh·g^-1.即使经过50次充放电循环后,其充放电容量依然可以保持在405.8 mAh·g^-1.  相似文献   

9.
采用机械球磨法制备CrTaO_4纳米材料,并首次将其作为锂离子电池负极材料.利用X射线衍射分析(XRD)、扫描电子显微镜(SEM)、充放电测试、循环伏安(CV)测试和电化学交流阻抗测试(EIS)对材料的结构、形貌和电化学性能进行表征.与传统块材CrTaO_4相比,球磨后的CrTaO_4首次放/充电容量由313/147 mAh/g提高到508/309 mAh/g,充放电50次后放电容量可以保持在124 mAh/g,同时不同倍率进行充放电,充放电80次后改性样品的放电容量仍可维持在140 mAh/g,有效提高了电化学性能.  相似文献   

10.
目的:合成新型的有机硅基离子塑晶材料[DTMA][TFSI],测试材料的物理和电化学性能,研究其掺杂改性并作为固态电解质用于锂离子电池。创新点:1.合成新型的有机硅基离子型塑晶材料;2.将三元复合塑晶材料作为固态电解质在室温下用于锂离子电池。方法:1.通过热性能分析,得到材料的塑晶温度区间和融化熵值(图1和表1);2.通过电导率测试,确定塑晶掺杂对导电性能的影响(图2);3.通过对扣式电池的充放电性能、倍率性能、循环性能以及阻抗的测试(图4~7),得到塑晶复合物作为固态电解质的电化学性能以及电池循环的稳定性和可逆性。结论:1.合成新型有机硅基离子塑晶材料[DTMA][TFSI],塑晶温度区间为–26°C到54°C;2.在纯塑晶IPC中添加10% LiODFB和10%PC,得到复合物的电导率为1×10~(-4) S/cm,提高塑晶作为固态电解质在室温下应用的可行性;3.将复合物用于LiFePO_4/Li半电池测试,在C/20倍率下,电池的放电比容量为144 mA·h/g,库伦效率为99%。在50次循环后,容量保持率为94%;4.测试结果表明,新型有机硅基离子塑晶的复合物可作为固态电解质材料应用于锂离子电池,以及更高能量密度的锂-硫和锂-空电池。  相似文献   

11.
目的:电动汽车和大规模储能的发展对锂离子电池的能量密度提出了更高的要求,但现有商业石墨负极容量难以满足要求。本文结合石墨烯高电导和高容量的优点以及中间相碳微球材料循环稳定性优良的优势,研究和报道一种容量高和循环性能好的石墨烯/中间相碳微球复合负极材料。方法:1.通过选择高电导率石墨烯和中间相碳微球,制备石墨烯和中间相碳微球复合负极材料。2.选用商业聚偏氟乙烯(PVDF)粘结剂,制备复合材料电极极片,测试和表征电极的形貌、电导以及半电池的充放电等电化学性能,并优化复合材料质量比。3.选择优化的复合负极材料(GMC(8:2)),研究其长循环性能。结论:中间相碳微球的球形结构能有效防止石墨烯的折叠团聚,从而发挥石墨烯的高电导性能。因此,石墨烯/中间相碳微球复合负极材料表现出了很好的倍率性能和循环性能,且其容量达到了421 mA·h/g以上,高于商业石墨的理论容量,具有潜在的应用前景。  相似文献   

12.
采用流变相法方法,成功地合成了六方晶型的LiMnBO3/C复合材料.用XRD、TG、SEM等技术对材料的结构和形貌进行表征,并对其电化学性能进行了测试,结果表明:在电压范围为1.0~4.6 V,电流密度为10 mA/g的充放电条件下,煅烧温度为800℃时,合成的样品首次放电比容量达到了139 mAh/g,而煅烧温度为800℃时,合成的样品首次放电比容量只有105mAh/g.其电化学性能有了明显的改善,具有较高的可逆比容量和优良的循环性能.  相似文献   

13.
采用流变相法方法,成功地合成了六方晶型的LiMnBO3/C复合材料。用XRD、TG、SEM等技术对材料的结构和形貌进行表征,并对其电化学性能进行了测试,结果表明:在电压范围为1.0~4.6V,电流密度为10mA/g的充放电条件下,煅烧温度为800℃时,合成的样品首次放电比容量达到了139mAh/g,而煅烧温度为800℃时,合成的样品首次放电比容量只有105mAh/g。其电化学性能有了明显的改善,具有较高的可逆比容量和优良的循环性能。  相似文献   

14.
V2O5被认为是一种有潜力成为商业锂离子电池电极的材料.本文合成了一种原位聚苯胺(PANI)插层V2O5复合材料以增强锂离子在材料中的脱/嵌能力.该复合材料V-O层的层间距显著增大(13.34?),为Li+的快速扩散提供了通道.同时,PANI本身的高导电性,提高了V2O5/PANI复合材料的电子电导率,V2O5/PANI复合材料的储锂性能也得到改善.在1 A·g-1的电流密度下循环450圈,V2O5/PANI的比容量达到760.1 mAh·g-1.此外,该复合材料展现出高赝电容行为,具有较好的高倍率性能,在10 A·g-1的高电流密度下循环1600圈,依旧有261.0 mAh·g-1可逆比容量.  相似文献   

15.
碳源是影响聚阴离子型锂离子电池正极材料电化学性能的关键因素之一.研究碳源对Li_3V_2(PO_4)_3正极材料晶体结构、形貌、颗粒尺寸、热解碳形态、导电性和电化学性能的影响.分别以聚丙烯腈、丹宁酸、没食子酸、葡萄糖酸内脂为碳源,通过碳热还原法制备Li_3V_2(PO_4)_3/C复合正极材料.结果表明,相比聚丙烯腈、丹宁酸,没食子酸、葡萄糖酸内脂为碳源制备的Li_3V_2(PO_4)_3/C具有更高的电化学活性和循环稳定性.在20 C的高倍率下,以葡萄糖酸内脂为碳源制备的Li_3V_2(PO_4)_3/C表现出最高的放电容量,这主要归于材料高的结晶度、导电性以及材料颗粒表面完整的包覆碳层.  相似文献   

16.
采用溶胶-凝胶法合成了Zn2+取代的锂离子电池正极材料Li1+xZnxMn2-xO4。结构研究结果表明,用这种方法可以在比固相反应低得多的温度下得到单相的尖晶石且制得的材料粒度均匀,粒径大多在150nm左右。半电池循环测试结果表明,起始组成为x=0.06的样品性能最佳,其与锂片组成的半电池在3.0V—4.6V间,以0.10mA/cm2的电流密度进行充放电的首次充、放电容量分别为131.4mAh/g和129.2mAh/g,经35次循环后容量仍保持在100mAh/g。  相似文献   

17.
利用高温固相反应法制备了新型锂离子电池正极材料Li2Ru0.5Co0.5O3.通过X射线衍射技术和电化学性能测试对Li_2Ru_(0.5)Co_(0.5)O_3的微观结构及其电化学性能进行了表征.研究结果表明,该新材料为六方层状结构,空间群为R-3M;电化学性能测试表明,该材料具有良好的比容量和循环性能,在电压范围2.5V~4.8V内,以16mA/g的电流密度,其初始充电比容量达240mAh/g,初始放电比容量为175mAh/g,40次循环后容量保持率为78%.  相似文献   

18.
通过一步水热法合成了Fe_2O_3/GO复合材料,得到的氧化铁能很好地与石墨烯复合在一起,并且具有比同方法得到的纯Fe_2O_3更小的颗粒直径.Fe_2O_3/GO复合材料表现出了很好的电化学性能,在1.0 A·g~(-1)的电流密度下能够释放出高达726/715 mAh·g~(-1)的放/充容量,其循环稳定性也得到大大提高.石墨烯的有效复合不仅为电极材料提供了高的导电性,而且有效缓解反复充放电过程中体积效应带来的应力集中,防止材料粉化脱落,从微观结构的改进中有效提升了材料的宏观电化学性能.  相似文献   

19.
本文采用水热法制备CoMoO_4作为超级电容器电极材料,研究了CoMoO_4电极材料的形貌和电化学性能.结果显示,350℃退火样品SEM图显示CoMoO_4样品为纳米棒;CoMoO_4材料在1 A·g(-1)的电流密度下比容量为155 F·g(-1)的电流密度下比容量为155 F·g(-1),并在渐变的电流密度下连续充放电循环1 600次后电容量衰减了9.8%.结论:CoMoO_4材料具有良好的电化学性能.  相似文献   

20.
用低温水热法合成具有高电导率的Na2Ti3O7@CNT纳米复合材料,通过扫描电镜、XRD等手段表明Na2Ti3O7颗粒包覆在碳纳米管表面形成纳米复合材料.在电化学测试中Na2Ti3O7@CNT可逆容量达到210 mAh g-1,并在30C高倍率放电情况下,比容量仍然保持在50 mAh g-1,表明Na2Ti3O7@CNT作为钠离子电池负极材料具有很好的容量和倍率性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号