首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
近年来,各省市中考及初中数学竞赛中,经常有最值问题出现,现举例说明·一、利用判别式求最值例1(2004年全国初中数学竞赛试题)实数x、y、z满足x+y+z=5①,xy+yz+zx=3②,则z的最大值是·分析:消去一未知数,使之变为z为参数的一元二次方程·解:由①得y=5-x-z③把③代入②得x(5-x-z)+z(5-x-z)+zx=3整理得:x2+(z-5)x+z2-5z+3=0因为x为实数,所以Δ≥0所以(z-5)2-4(z2-5z+3)≥0所以(3z-13)(z+1)≤0所以-1≤z≤133·二、利用非负数性质求最值例2多项式P=2x2-4xy+5y2-12y+13的最小值为·分析:将多项式配方,使之化为几个非负数之和·解:P=2x2-4xy+5y2…  相似文献   

2.
最值问题,也就是最大值和最小值问题.它是初中数学竞赛中的常见问题.这类问题出现的试题,内容丰富,知识点多,涉及面广,解法灵活多样,而且具有一定的难度.本文以例介绍一些常见的求解方法,供读者参考.一、配方法例1(2005年全国初中数学联赛武汉CASIO杯选拔赛)2x2+4xy+5y2-4x+2y-5可取得的最小值为.解:原式=(x+2y)2+(x-2)2+(y+1)2·27·-10.由此可知,当x=2,y=-1时,有最小值-10.二、设参数法例2(《中等数学》奥林匹克训练题)已知实数x、y满足x3+y3=2.则x+y的最大值为.解:设x+y=k,易知k>0.由x3+y3=2,得(x+y)(x2-xy+y2)=2.从而,xy=13(k2-k2).由…  相似文献   

3.
一元二次方程根的判别式是初中数学中的一个重要内容,应用其解题是初中数学中的一种重要方法.在近年来全国各省市数学竞赛中屡见不鲜,本文举例说明其广泛应用,供参考.一、求参数值例1(2003年全国初中数学竞赛天津赛区初赛)已知二次函数y=ax2+bx+c,一次函数y=k(x-1)-k24,若它们的图象对于任意的实数k都只有一个公共点,则二次函数的解析式为.解:由题意得y2=ax+bx+cy=k(x-1)-k24整理得:ax2+(b-k)x+(c+k+k24)=0.又由根的判别式Δ=(b-k)2-4a(c+k+k24)=0,即(1-a)k2-2(b+2a)k+(b2-4ac)=0.(1)由于(1)中对任意的实数k均成立,故解得a=1,b=-2,c=1.二、…  相似文献   

4.
例 1.已知 a2 b2 =6 ab且 a>b>0 ,则 a ba- b=。 (2 0 0 1年北京市中学生数学竞赛初二决赛题 )解 :设 a=x y,b=x- y,则将其代入 a2 b2 =6 ab中 ,得 (x y) 2 (x- y) 2 =6 (x y) (x- y)展开括号 ,化简整理得 4 x2 =8y2。而 a>b>0 ,∴ x>y>0 ,∴ x2y2 =2 ,∴ xy=2 ,另 a b=2 x,a- b=2 y,因此 a ba- b=2 x2 y=xy=2。二、求最值范围例 2 .已知实数 a、b满足 a2 ab b2 =1,且 t=ab- a2 - b2 ,那么 t的取值范围是。 (2 0 0 1年 TI杯全国初中数学竞赛 A卷试题 )解 :设 a=x y,b==x- y,代入已知式得(x y) 2 (x y) (x- y) (x- y…  相似文献   

5.
处理富于变化的一直线与某一圆锥曲线的综合问题,方法之一就是退到一元二次方程解决,其三步曲是:①直线方程代入圆锥曲线方程;②利用一元二次方程的韦达定理或判别式;③想干嘛就干嘛·本文意在揭示“想干嘛”有哪些多样化的特征,“就干嘛”又有哪些规律化的玄机·一、角平分线、弦长(或面积)问题例1如图1,过点P(1,2)的直线与抛物线y=x2相交于A、B两点,O为坐标原点,当直线OP平分∠AOB时,求直线AB的方程及△AOB的面积·解:直线y-2=k(x-1),代入y=x2得x2-kx+k-2=0·设交点A(x1,y1)、B(x2,y2),由韦达定理x1+x2=k,x1x2=k-2·因为直线OP平…  相似文献   

6.
基本问题 :已知圆的方程为 x2 + y2 =r2 ,求过圆上一点 P0 (x0 ,y0 )的圆的切线方程。解法 1:若 y0 ≠ 0 ,则所求切线斜率存在 ,设所求方程为 y- y0 =k(x- x0 ) ,代入 x2 + y2 =r2 得 :(1+ k2 ) x2 + (2 ky0 - 2 k2 x0 ) x+ y0 2 + k2 x0 2 -2 kx0 y0 - r2 =0 ,由判别式△ =0得 :(r2 - x0 2 ) k2 + 2 x0 y0 k+ r2 -y0 2 =0。又 x0 2 + y0 2 =r2 ,∴ y0 2 k0 2 + 2 x0 y0 k+ x0 2 =0。即 (y0 k+ x0 ) 2 =0 ,解得 k=- x0 / y0 。故所求切线方程为 y- y0 =- x0 / y0 (x- x0 ) ,即 x0 x+ y0 y=x0 2 + y0 2 亦即 x0 x+ y0 y=r2 。 1当 y0 =0时 ,…  相似文献   

7.
一元二次方程ax2+bx+c=0(a≠0)根的判别式Δ=b2-4ac是初中数学的一个重要知识点,本文结合例题,说说应用一元二次方程根的判别式(以下简称判别式)解题时需注意的几点.一、使用判别式的条件方程ax2+bx+c=0(a≠0)的a≠0是使用判别式的前提条件.例1 关于x的一元二次方程k2x2-(2k+1)x+1=0有两个实数根,求k的取值范围.分析:根据题设条件,可知Δ=[-(2k+1)]2-4k2≥0且k2≠0,解得k≥-14且k≠0. 二、方程有两个实数根与方程有实数根区别方程ax2+bx+c=0有两个实数根,则必有≠0;但方程ax2+bx+c=0有实数根,则它可有两个实数根,也可能有一个实数根,…  相似文献   

8.
一、化简代入技巧例1先化简,再求值。ba-b·a3+ab2-2a2bb3÷b2-a2ab+b2,其中a=23,b=-3。解:待求式=ba-b·a(a-b)2b3·b(b-a)=-ab=-23÷(-3)=29。二、求值代入技巧例2已知a(a-2)-(a2-2b)=-4,则a2+b22-ab=。解:∵a(a-2)-(a2-2b)=-4,∴a2-2a-a2+2b=-4,∴-2(a-b)=-4,a-b=2,故a2+b22-ab=(a-b)22=222=2。三、换元代入技巧例3如果x:y:z=1:3:5,那么x+3y-zx-3y+z=。23,则。解:设x=k,y=3k,z=5k,则x+3y-zx-3y+z=k+9k-5kk-9k+5k=5k-3k=-53。四、和积代入技巧例4已知x=樤3+樤2,y=樤3-樤2,试求2xyx2-y2+xx+y-yy-x的值。解:由题设得,x+y=2樤3,x-y=2樤2,xy=1…  相似文献   

9.
一、直线与圆锥曲线位置关系问题这种问题实际上是讨论直线方程和圆锥曲线方程组成的方程组是否有实解的问题.通过消元最终归结为讨论一元二次方程ax2+bx+c=0的解的个数问题.要注意a≠0与a=0两种情形,同时要特别重视判别式的作用.例1直线y=kx-1与抛物线(y+1)2=4(x-2)只有一个公共点,则k的值为.解(1)若k=0,y=-1,显然直线与(y+1)2=4(x-2)只有一个公共点.(2)若k≠0,由y=kx-1,(y+1)2=4(x-2),得k2x2-4x+8=0.∴驻=16-4k2×8=0,即k=±姨22.故k的值可能为0,-姨22,姨22.二、弦长问题若直线l与圆锥曲线的交点为A(x1,y1),B(x2,y2),由AB=(x2-x1)2+(y2-…  相似文献   

10.
求作一个新的一元二次方程 ,使新方程的根是原方程各根的平方 (或 k倍 )等 ,可以有以下的三种方法 ,现以初三《代数》P35B组第 2题为例 ,试说明如下。题目 :已知方程 x2 - 2 x - 1=0 ,利用根与系数的关系求作一个一元二次方程 ,使它的根是原方程各根的平方。方法 1:韦达定理法解 :设原方程的两根为 x1、x2 ,新方程的两根为y1、y2 ,则y1 y2 =x12 x2 2 =( x1 x2 ) 2 - 2 x1x2 =6,y1· y2 =x12· x2 2 =( x1x2 ) 2 =1。∴所求新方程为 :y2 - 6y 1=0。方法 2 :变换代入法解 :设新方程的根为 y,则 y=x2 。∴ x=± y ,代入 x2 - 2 x- 1=0 ,得(±…  相似文献   

11.
解答数学问题 ,条件是非常重要的 ,题中除了明显的已知条件外 ,还有一些隐含条件 ,解题时 ,若不注意 ,就会使“线索”中断或掉入题中的“陷阱” ,现举例说明。一、“无法”解例 1 已知 y =1 - 2x + 2x - 1 + 2 ,求xy 的值。分析 :此题中的隐含条件是 1 - 2x≥ 02x - 1≥ 0 ,若不注意这一条件就不能求出x =12 ,y =2 ,从而无法求出xy 的值。二、“多”解例 2 已知角A是锐角 ,且tanA、cotA是关于x的一元二次方程x2 + 2kx +k2 - 3=0的两个实数根 ,求A的值。分析 :本题中判别式△ =4k2 - 4(k2 - 3) =1 2 >0 ,因此 ,依靠判别式无法排除不合题…  相似文献   

12.
将课本例题进行有效的变通及拓展,既能让学生真正掌握所涉及内容又有利于其探究能力的培养,也是提高我们教师处理教材能力的有效途径.全日制普通高级中学教科书(实验修订本·必修)数学第二册(上)第130页图1例2:如图1,直线y=x-2与抛物线y2=2x相交于A、B两点,求证OA⊥OB.证明:设A(x1,y1),B(x2,y2),将直线方程y=x-2代入抛物线y2=2x得:x2-6x+4=0.从而有x1+x2=6,x1·x2=4.又因为y1=x1-2,y2=x2-2,所以y·1y2=(x1-2)(x2-2)=x·1x2-2(x1+x2)+4=-4.∴kOA·kOB=xy11·xy22=yx11yx22=-44=-1.∴OA⊥OB.在讲解完本题之后,我把题目改为:设直线l与抛…  相似文献   

13.
(本讲适合初中) 一元二次方程ax~2 bx c=0(a≠0)根的判别式△=b~2-4ac是初中数学十分重要的基础知识,课本中介绍了一些应用,本文结合实际再介绍其它应用。1 用于解某些二元二次方程 例1 求方程x xy y~2-3x-3y 3=0的实数解。  相似文献   

14.
x的一次方程与x的一元二次方程都是关于x的方程,区别只是x的一元二次方程多了一个隐含条件,如二次项系数不为零,然而这个不明显的条件,导致很多同学把关于x的方程的实根误认为是关于x的一元二次方程的实数根。为避免这种错误,特举几例加以说明。例1k为何值时,关于x的方程2(k+1)x2+4kx+2k-1=0有实数根?解:若方程2(k+1)x2+4kx+2k-1=0是一元二次方根,则k应满足:2(k+1)≠0△=(4k)2-4×2(k+1)·(2k-1)≥0kk≠≤1-1k≤1且k≠-1若方程2(k+1)x2+4kx+2k-1=0是一元一次方程,则有2(k+1)=0即k=-1·当k=-1时,原方程为-4x-3=0,方程有实数根x=-43,综合两种…  相似文献   

15.
一元二次方程根的判别式主要用于判断方程根的情况,灵活运用它还可以解决其它问题.一、用于求值例1如果代数式(2m-1)x2+2(m+1)x+4是完全平方式,求m的值.解:∵代数式(2m-1)x2+2(m+1)x+4是完全平方式,∴(2m-1)x2+2(m+1)x+4=0有两个相等的实数根.∴△=〔2(m+1)〕2-4×4(2m-1)=0.解之,得m=1或m=5.二、用于求最值例2已知a、b都是正实数,且a3+b3=2,求a+b的最大值.解:设a+b=k,则b=k-a,将b=k-a代入a3+b3=2,并以a为主元整理,得3ka2-3k2a+k3-2=0.∵a是正实数,则关于a的方程必有实数根,∴△=(-3k2)2-12k(k3-2)≥0,解得0相似文献   

16.
近年高中数学联赛有这样一道题 :实数x ,y满足 4x2 - 5xy +4 y2 =5,设S =x2 +y2 ,则 1Smax+1Smin的值为 .下面给出这道题的多种解法 .解法 1 由题设易知S =x2 +y2 >0 ,设x =Scosθy =Ssinθθ为参数 ,代入 4x2 - 5xy+4y2 =5,得 4Scos2 θ- 5Ssinθcosθ +4Ssinθ=5,所以sin2θ =8S - 105S ,于是有|8S - 105S |≤ 1,所以1013≤S≤ 103,所以Smax =103,Smin =103,所以 1Smax+1Smin=310 +1310 =85.解法 2 由x ,y为实数可知 :x2 +y2 ≥ 2 |xy|所以 - x2 +y22 ≤xy≤ x2 +y22 .又 4x2 - 5xy +4 y2 =5,得 5xy =4x2 +4 y2 - 5所以4x2 …  相似文献   

17.
一元二次方程ax2 +bx +c =0(a≠0)根的判别式是b2-4ac,通常用符号"△"来表示.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;反之也成立.判别式不仅用来判断一元二次方程根的情况,也可以解决其他数学问题.一、求字母的值 例1 (2012年广州卷)已知关于x的一元二次方程x2-2√3x+k=0有两个相等的实数根,则k的值为____. 解:∵方程x2-2√3x+k=0有两个相等的实数根,∴△=(-2√3)2-4k=0. ∴12-4k=0,解得k=3.故填3. 温馨小提示:这是判别式的典型应用.我们要熟记判别式值的正负与根的个数之间的关系.  相似文献   

18.
一元二次方程历来是初中数学竞赛的重点和热点,利用建构一元二次方程的思想解决相关问题的命题,可以说备受命题者的青睐,因而这类赛题在各级各类数学竞赛中频频出现.它的应用之广,作用之妙,常常令人叫绝.本文结合具体竞赛试题,分类介绍建构一元二次方程解数学竞赛试题的若干应用.1建构二次方程求值例1已知x,y均为实数,且满足xy+x+y=17,x2y+xy2=66.求x4+x3y+x2y2+xy3+y4的值.(2000,山东省初中数学竞赛)分析:由观察可知,题设两个等式均可表示为x+y与xy的形式,且等于常数,因此,可利用与系数的关系建构一元二次方程求解.解由已知条件可得xy+(x+y…  相似文献   

19.
根据题型数值结构特征 ,选用恰当的化简技巧 ,是解决课本二次根式题的关键。一、变换所求 ,以简改繁例 1 已知 x=12 (7+5 ) ,y=12 (7- 5 ) ,求 x2 - xy+ y2 的值。 (课本 P2 2 0第 7题 )解 :当 x =12 (7+5 ) ,y=12 (7- 5 )时 ,原式 =(x- y) 2 + xy   =(5 ) 2 + 14 (7- 5 )   =112 。二、化简变形 ,化难为易例 2 已知 x=3+ 23- 2,y= 3- 23+ 2,求 xy+ yx的值。 (课本 P2 2 1B组第 3题 )解 :∵ x=- 7- 43,y=- 7+ 4 3,∴ x+ y=- 14 ,xy=1。∴原式 =x2 + y2xy =(x+ y) 2 - 2 xyxy    =(- 14 ) 2 - 2× 1=194。三、变形凑零 ,捷足先登…  相似文献   

20.
一元二次方程ax~2+bx+c=0(a≠0)有实根的充要条件是判别式△=b~2-4ac≥0,这里a、b、c是与未知数x无关的常数,对于象 1.求x~2+2xsin(xy)+1=0的一切实数解. 2.求x~2-2xsin(π/2)x+1=0的所有实根. 3.证明2sinx=5x~2+2x+3无实数解. 之类问题,是不是也可以应用类似的判别式来解呢?直接应用一元二次方程的根的判别式来解是缺乏理论根据的,本文给出这类问题的一般形式  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号