首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
命题 若P是△ABC内的一点 ,记△BPC、△APC、△APB的面积为SA 、SB 、SC ,则SA ·PA SB ·PB SC ·PC =0 .证明 延长AP与BC边相交于D点 ,则|BD||DC| =S△ABDS△ACD=S△BPDS△PCD=-S△BPD-S△PCD等比定理 SCSB.记|BD||DC|=λ ,有BD=λDC ,所以PD- PB=λ( PC- PD) ,所以 - ( 1 λ) ·PD PB λPC=0 .又因为PD =- |PD||PA| · PA =-SASB SC·PA ,所以 SASB SC( 1 SCSB) ·PA PB SCSB ·PC=0 ,所以SA·PA SB·PB SC·PC =0 .推论 1 当P为△ABC的内心时 ,有sin…  相似文献   

2.
性质已知△ABC 及点 P,若λ_1 λ_2 λ_3=λ_1,λ_2,λ_3都是非零实数,则△PBC,△PCA,△PAB 的面积之比为|λ_1|:|λ_2|:|λ_3|.1 性质证明证明如图1,作向量=λ_1=λ_2,=λ_3,则点 P 为△A′B′C′的重心。所以S_(△PBC)=1/(|λ_2|·|λ_3|)·S_(△PB′C′)  相似文献   

3.
<正>张角公式如图1,设直线ACB外一点P对于线段AC、CB的张角分别为α、β,则sin(α+β)/PC=sinα/PB+sinβ/PA.证明因为S_(△PAB)=S_(△PAC)+S_(△PCB),所以1/2PA·PB·sin(α+β)=1/2PA·PC·sinα+1/2PC·PB·sinβ,两边同除以1/2PA·PB·PC,即得所证等式.下面举例说明它的应用.例1如图2,已知BP:PQ:QC=3:2:1,AG:GC=4:3,则BE:EF:FG=___.  相似文献   

4.
平面几何中有一个与面积关系有关的张角公式,一般不引人注目。但在教学时,却发现张角公式能帮助解决许多几何题,有的还是典型的难题。现分两方面介绍如下,供初中数学教师教学时参考。一、张角公式已知由点P发出的三射线PA、PB、PC;且∠APC=α,∠CPB=β,∠APB=α β<180°,那么A、B、C三点在一直线上的充要条件是: sin(α β)/PC=sinα/PB sinβ/PA 证明:若A、B、C三点共线, 则△PAB=△PAC △PCB 故 1/2PA·PBsin(α β)=1/2PA·sinα 1/2PB·PCsinβ两边同除以1/2PA·PB·PC,即得所欲证的等式。反之,若命题中等式成立,则反推可得: △PAB=△PAC △PCB。这说明△ABC=|△PAB-△PAC-△PCB|=0,所以A、B、C三点共线。  相似文献   

5.
1.定理 如图1,由点P发出的三射线PA、PB、PC,且∠APC=α,∠CPB=β,∠APB=α β<180°,那么A、B、C三点在一直线上的充要条件是 证明 必要性:若A、B、C三点共线,则 S△PAB=S△PAC S△PCB,因此两边同除以1/2PA·PB·PC,即得所欲证的等式.  相似文献   

6.
本文现将三角形内角平分线定理的推广及其在证明几个著名几可定理中的应用介绍如下: 一推广如图1,已知P为△ABC的AB边上一(内分)点,求证:PA/PB=CAsinα/(CBsinβ) 证明∵ S_(△CAP)/S_(△CBP)=PA/PB(同高) ∴ S_(△CAP)/S_(△CBP)=1/2CA·CPsinα/(1/2CB·CPsinβ)显然,当α=β时,则sinα=sinβ,  相似文献   

7.
文[1]讨论了三角形的一个向量性质并将其推广到三棱锥中. 命题1如图1所示,已知△ABC及其内部一点P,若λ1^→PA+λ2^→PBλ3^→PC=^→0,λ1,λ2,λ3都是正实数,过点P作直线与AB、AC两边分别交于M、N两点,且^→AM=x^→AB,^→AN=y^→AC,则λ2/x+λ3/y=λ1+λ2+λ3.  相似文献   

8.
本文现将张角公式及其在数学竞赛解题中的应用介绍如下: 一、张角公式如图,设直线ACB外一视点P,对于线段AC、CB的张角分别为α、β,且α β<180°,则sin(α β)/PC=sinα/PB sinβ/PA 证明:∵△PAB=△PAC △PCB,∴1/2PA·PB·sin(α β)-1/2PA·PC·sinα 1/2PC ·PBsinβ。∴两边同除以1/2PA·PB·PC,即得欲证式。二、应用举例例1 连结正△ABC的外接圆劣弧AB上一点P的线段CP交AB于D,求证:1/PA 1/PB=1/PD(1990年山西省初中数学  相似文献   

9.
1 基础知识西姆松定理 过三角形外接圆上异于顶点的任意一点作三边的垂线 ,则三垂足共线 (此线称为西姆松线 ) .证明 :如图 1 ,设P为△ABC的外接圆上任一点 ,从P向三边BC、CA、AB所在直线作垂线 ,垂足分别为L、M、N .连结PA、PC ,由P、N、A、M四点共圆 ,有∠PMN =∠PAN =∠PAB =∠PCB =∠PCL .又P、M、C、L四点共圆 ,有∠PML =∠PCL .故∠PMN =∠PML ,即L、N、M三点共线 .注 :此定理有许多证法 .例如 ,如图 1 ,连结PB ,令∠PBC =α ,∠PCB =β ,∠PCM =γ ,则∠PAM =α ,∠PAN =β ,∠PBN =γ ,且BL =PB…  相似文献   

10.
命题已知三棱锥P-ABC,Q是底面△ABC内的一点,S△BQC∶S△CQA∶S△AQB=α∶β∶γ,且α β γ=1.(ⅰ)一平面分别交PQ、PA、PB、PC于Q′、A′、B′、C′点,则PQPQ′=α.PPAA′ β.PPBB′ γ.PPCC′.(ⅱ)过P点的一个球面,分别交PQ、PA、PB、PC于Q′、A′、B′、C′点,则PQ′.PQ=α.PA′.PA β.PB′.PB γ.PC′.PC.为证明该命题,先介绍几个引理.引理1已知P为△ABC内一点,S△BPC∶S△CPA∶S△APB=m∶n∶r,延长AP交BC于M,则MBMC=nr,PAPM=n m r.引理2已知M为△ABC边BC上一点,且BMMC=mn,任作一直线…  相似文献   

11.
一、张角公式 如图1,由点P发出的三射线PA、PB、PC,且∠APC=α,∠CPB=β,∠APB=α+β〈180°,那么 A、B、C三点在一直线上的充要条件是sin(α+β)/PC=sinα/PB+sinβ/PA.  相似文献   

12.
1.引言 文[1]中,蒋明斌老师给出如下两个猜想: 猜想1、设P,P′为△ABC内两点,XA=PA,XB=PB,XC=PC,XA′=P′A,XB′=P′B,XC′=P′C,则 (扫:㈠):(x:xi·x/,L:xB·x/,A。xc,xc/)≥(1:l。a’*A。x,b’ h寸指;)其中λ_1、λ_2、λ_3∈R~ 猜想2,设λ_1、…、λ_n∈R~ ,P、P′为凸n边形A_1A_2…A_n所在平面上两点,则: (三札)(君:xiPAitP/Ai)≥:≤i乏,≤nx山4i厶i’ 1‘2, 文[2]中,林祖成给出如下猜想: 猜想3,四面体A_1A_2A_3A_4存在棱切球,内切球半径记为r,则:  相似文献   

13.
引理(费尔马问题) 已知△ABC,使PA+PB+PC为最小的平面上的点P称为△ABC的费尔马点. 解:显见点P不可能在△ABC外. (1)若△ABC的每个内角都小于120°,将△ABP绕B点逆时针旋转60°至△A_1BQ的位置,如图1,则△BPQ为正三角形.于是PA+PB+Pc=A_1Q+QP+CP. ∵A_1、C为定点,欲使PA+PB+PC最小,P点应在A_1C上.  相似文献   

14.
命题1“等边三角形内任一点至三边距离之和为一定值”有几种证法,但以下面的证法较简便。证明:如图1,连结PA,PB,PC. ∵S_(△ABC)=S_(△PBC)+S_(△PCA)+S_(△pAB),∴S_(△ABC)=1/2BC·PD+1/2CA·PE+1/2AB·PF又 AB=BC=CA,∴ PD+PE+PF=2S_(△ABC)/BC. 等边三角形的这一性质可推广到等边凸多边形中,以上的证明实质上给出如下的定理1 等边凸多边形内任一点至各边的距离之和为定值。特殊地,正多边形内任一点至各边的距离之和为定值。  相似文献   

15.
定理 在△ABC的边BC的延长线上及CA,AB上取点D,E,F,如AF/(FB)=λ_1,BD/(DC)=λ_2,CE/(EA)=λ_3,则 S_(△DEF)=|(λ_1λ_2λ_3-1)/((λ_1 1)(λ_2-1)(λ_3 1))|S_(△ABC)。 证明 ∵CD/(BC)  相似文献   

16.
性质 若P是△ABC内部一点,λi∈R^*(i=1,2,3),且λ1^→PA+λ2^→PB+λ3^→PC=^→0,则S△BPC:S△CPB:S△APB=λ1:λ2:λ3.  相似文献   

17.
有关费尔马点的一个不等式的加强   总被引:1,自引:0,他引:1  
设P是△ABC内的费尔马点,记PA=u,PB=v,PC=w,△ABC的三边为a、b、c.则 u v w≤(ab bc ac)~(1/2). (1) 不等式(1)改进了四川周洪的结果(见《中等数学》1993年第1期)。  相似文献   

18.
1.张角公式如图1,设直线ACB外一点P对于线段AC、CB的张角分别为αβ,则sin(α+β)/PC=sinα/PB+sinβ/PA证明:因为S△PAB=S△PAC+ S4PCB,所以1/2PA.PB·sin(α+β)=1/2PA·PC·sinα+1/2PC·PB·sinβ,两边同除以1/2PA·PB·PC,即得所证等式.  相似文献   

19.
从平面几何到代数、立体几何和解析几何,证明三点共线的命题、方法、技巧,实在不少,它们都可以归结为等价命题.(1)P、Q、R 三点共线(在同一条直线上).(2)P 在直线 QR 上.(3)P 到直线 QR 的距离为0.(4)P、Q、R 都是平面α与β的公共点.(5)P、Q、R 是△ABC 外接圆上一点分别在直线AB、BC、CA 上的射影.(6)S_(△PQR)=0。(7)三点 P、Q、R 在直线 AB 同侧,且 S_(△PAB)=S_(△QAB)=S_(△RAB).(8)线段 PQ、QR、PR 中,有两条之和等于第三条.(9)k_(PQ)=k_(PR).(10)若直线 PQ 的方程为 Ax By C=0,则直线 PR 的方程为 kAx kBy kC=0(k≠0为常数).若设三点 P、Q、R 的坐标分别为(x_1,y_1)、(x_2,y_2)、(x_3,y_3),则有(11)(x_3,y_3)满足方程(x-x_1)/(x_2-x_1)=(y-y_1)/(y_2-y_1).(12)设λ_1=(x_1-x_2)/(x_2-x_3),λ_2=(y_1-y_2)/(y_2-y_3),则λ_1=λ_2.  相似文献   

20.
《中学数学》(苏州)1996年第11期张善立先生证明了一个猜想不等式:设p为△ABC的费马点,记PA=u,PB=v,PC=w,△ABC的三边为a,b,c,则 (u v w)~2≤ab bc ca (1) 笔者加强(1)为:(2) 证明 在△ABC中,有tgA/2 tgB/2  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号