首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to assess the effect of periodized resistance training on accelerative sprint performance. Sixteen physically active men participated in a randomized controlled study. An experimental group (n = 10) completed an 8-week periodized resistance training intervention, while a control group (n = 6) did not train. Pre- and post-training measures of 20-m straight-line sprint time, including a 10-m split, maximum strength, and explosive strength, were recorded. Flight time, stance time, stride length, and stride frequency were quantified from digitized video recordings of the first three strides of the 20-m sprint. Resistance training resulted in significant increases in maximum strength (parallel back squat: 19%) and explosive strength (6–10%). However, both groups increased 0–10 m sprint times (experimental group = 6%; control group = 3%) while 10–20 m times were reduced (experimental group = 7%; control group = 4%), highlighting the mechanical differences between the distinct sprint phases. The change during the 0–10 m interval was accompanied by a reduction in stride frequency during the first three strides. Strength coaches should be aware that the potential benefits of increased muscular strength during short sprints are likely to be affected by mechanical specificity and that improvements in sprinting performance may not occur immediately after a period of resistance training.  相似文献   

2.
The aim of this study was to investigate the effects of maturation on power and sprint performance adaptations following 6 weeks of plyometric training in youth soccer players during pre-season. Sixty male soccer players were categorized into 3 maturity groups (Pre, Mid and Post peak height velocity [PHV]) and then randomly assigned to plyometric group and control group. Vertical jump, standing long jump, and 20-m sprint (with and without ball) tests were collected before- and after-intervention. After the intervention, the Pre, Mid and Post-PHV groups showed significant (P ≤ 0.05) and small to moderate effect size (ES) improvement in vertical jump (ES = 0.48; 0.57; 0.73), peak power output (E = 0.60; 0.64; 0.76), standing long jump (ES = 0.62; 0.65; 0.7), 20-m sprint (ES = ?0.58; ?0.66), and 20-m sprint with ball (ES = ?0.44; ?0.8; ?0.55) performances. The Post-PHV soccer players indicated greater gains than Pre-PHV in vertical jump and sprint performance after training (P ≤ 0.05). Short-term plyometric training had positive effects on sprinting and jumping-power which are important determinants of match-winning actions in soccer. These results indicate that a sixty foot contact, twice per week program, seems effective in improving power and sprint performance in youth soccer players.  相似文献   

3.
This study aimed to compare the effect of 6 weeks of resistance training or combined resistance training and change of direction exercises on physical performance and motor skills in futsal players. Thirty-four futsal players were divided into full squat group (SG, n = 12), combined full squat and change of direction exercises group (S+CDG, n = 12) and control group (CG, n = 10). The resistance training for SG consisted of full squat with low load (~45–58% 1RM) and low volume (4–6 repetitions), whereas the S+CDG performed the same resistance training program combined with loaded change of direction. Sprint time in 10 and 20 m, change of direction test, countermovement vertical jump (CMJ) height, maximal strength and force–velocity relationship in full squat exercise, kicking speed ball (BSmean) and repeated sprint ability (RSAmean) were selected as testing variables. Both experimental groups showed significant improvements for CMJ, BSmean and all strength parameters. Only SG resulted in significant sprint gains, whereas S+CDG also achieved significant improvements in RSAmean. The CG remained unchanged after training period. No significant differences were found between both experimental groups. These findings suggest that only 12 sessions of either lightweight resistance training alone, lifting the load at maximal intended velocity or combined with change of direction exercises is enough to improve several physical and skills capacities critical to futsal performance in adult players.  相似文献   

4.
This study compared the functional and neural effects of two strength training programmes differing in set configuration. Thirteen participants performed 10 sessions, over a period of 5 weeks, of unilateral leg extensions with different set configurations but with identical work-to-rest ratios for each limb: a traditional configuration (4 sets of 8 repetitions, 10RM load, 3-min pause between sets) and an inter-repetition rest configuration (32 repetitions, 10RM load, 17.4 s of rest between each repetition). Mean propulsive velocity of the traditional sessions was lower than for inter-repetition rest sessions (0.48 ± 0.06 vs. 0.54 ± 0.06 m · s?1; P < 0.001), while perceived exertion was higher (8.3 ± 0.9 and 6.56 ± 1.6 for traditional training and IRT; P = 0.002). One repetition maximum (RM), work with 10RM load, maximum mean propulsive power, maximum voluntary contraction and time to failure with 50% of maximum isometric force improved similarly in both legs (time effect, P < 0.001; effect size range, 0.451–1.190). Time and set configuration did not show significant main effects or interactions for cortical adaptations (motor-evoked potentials, short-interval intracortical inhibition, intracortical facilitation). There were no significant correlations between changes in cortical and peripheral neural adaptations and strength improvement. In conclusion, inter-repetition rest configuration was as effective as traditional training in improving muscle performance.  相似文献   

5.
The purpose of this study was to determine the effectiveness of a 4-week running sprint interval training protocol to improve both aerobic and anaerobic fitness in middle-aged adults (40–50 years) as well as compare the adaptations to younger adults (20–30 years). Twenty-eight inactive participants – 14 young 20–30-year-olds (n = 7 males) and 14 middle-aged 40–50-year-olds (n = 5 males) – completed 4 weeks of running sprint interval training (4 to 6, 30-s “all-out” sprints on a curved, self-propelled treadmill separated by 4 min active recovery performed 3 times per week). Before and after training, all participants were assessed for maximal oxygen consumption (VO2max), 2000 m time trial performance, and anaerobic performance on a single 30-s sprint. There were no interactions between group and time for any tested variable, although training improved relative VO2max (young = 3.9, middle-aged = 5.2%; P < 0.04), time trial performance (young = 5.9, middle-aged = 8.2%; P < 0.001), peak sprint speed (young = 9.3, middle-aged = 2.2%; P < 0.001), and average sprint speed (young = 6.8, middle-aged = 11.6%; P < 0.001) in both young and middle-aged groups from pre- to post-training on the 30-s sprint test. The current study demonstrates that a 4-week running sprint interval training programme is equally effective at improving aerobic and anaerobic fitness in younger and middle-aged adults.  相似文献   

6.
Abstract

The purpose of this study was to evaluate the effects of moderate- to high-intensity resistance and concurrent training on inflammatory biomarkers and functional capacity in sedentary middle-aged healthy men. Participants were selected on a random basis for resistance training (n = 12), concurrent training (n = 11) and a control group (n = 13). They performed three weekly sessions for 16 weeks (resistance training: 10 exercises with 3 × 8–10 repetition maximum; concurrent training: 6 exercises with 3 × 8–10 repetition maximum, followed by 30 minutes of walking or running at 55–85% [Vdot]O2peak). Maximal strength was tested in bench press and leg press. The peak oxygen uptake ([Vdot]O2peak) was measured by an incremental exercise test. Tumour necrosis factor-α, interleukin-6 and C-reactive protein were determined. The upper- and lower-body maximal strength increase for both resistance (+42.52%; +20.9%, respectively) and concurrent training (+28.35%; +21.5%, respectively) groups (P = 0.0001).[Vdot]O2peak increased in concurrent training when comparing pre- and post-training (P = 0.0001; +15.6%). No differences were found in tumour necrosis factor-α and interleukin-6 for both groups after the exercise. C-reactive protein increased in resistance training (P = 0.004). These findings demonstrated that 16 weeks of moderate- to high-intensity training could improve functional capacity, but did not decrease inflammatory biomarkers in middle-aged men.  相似文献   

7.
Abstract

The aim of the present study was to investigate the effect of training at an intensity eliciting 90% of maximal sprinting speed on maximal and repeated-sprint performance in soccer. It was hypothesised that sprint training at 90% of maximal velocity would improve soccer-related sprinting. Twenty-two junior club-level male and female soccer players (age 17 ± 1 year, body mass 64 ± 8 kg, body height 174 ± 8 cm) completed an intervention study where the training group (TG) replaced one of their weekly soccer training sessions with a repeated-sprint training session performed at 90% of maximal sprint speed, while the control group (CG) completed regular soccer training according to their teams’ original training plans. Countermovement jump, 12 × 20-m repeated-sprint, VO2max and the Yo-Yo Intermittent Recovery Level 1 test were performed prior to and after a 9-week intervention period. No significant between-group differences were observed for any of the performance indices and effect magnitudes were trivial or small. Before rejecting the hypothesis, we recommend that future studies should perform intervention programmes with either stronger stimulus or at other times during the season where total training load is reduced.  相似文献   

8.
ABSTRACT

This study aimed to evaluate whether an individualised sprint-training program was more effective in improving sprint performance in elite team-sport players compared to a generalised sprint-training program. Seventeen elite female handball players (23 ± 3 y, 177 ± 7 cm, 73 ± 6 kg) performed two weekly sprint training sessions over eight weeks in addition to their regular handball practice. An individualised training group (ITG, n = 9) performed a targeted sprint-training program based on their horizontal force-velocity profile from the pre-training test. Within ITG, players displaying the lowest, highest and mid-level force-velocity slope values relative to body mass were assigned to a resisted, an assisted or a mixed sprint-training program (resisted sprinting in the first half and assisted sprinting in the second half of the intervention period), respectively. A control group (CG, n = 8) performed a generalised sprint-training program. Both groups improved 30-m sprint performance by ~1% (small effect) and maximal velocity sprinting by ~2% (moderate effect). Trivial or small effect magnitudes were observed for mechanical outputs related to horizontal force- or power production. All between-group differences were trivial. In conclusion, individualised sprint-training was no more effective in improving sprint performance than a generalised sprint-training program.  相似文献   

9.
ABSTRACT

Elite cyclists have often a limited period of time available during their short preparation phase to focus on development of maximal strength; therefore, the purpose of the present study was to investigate the effect of 10-week heavy strength training on lean lower-body mass, leg strength, determinants of cycling performance and cycling performance in elite cyclists. Twelve cyclists performed heavy strength training and normal endurance training (E&S) while 8 other cyclists performed normal endurance training only (E). Following the intervention period E&S had a larger increase in maximal isometric half squat, mean power output during a 30-s Wingate sprint (P < 0.05) and a tendency towards larger improvement in power output at 4 mmol ? L?1 [la?] than E (P = 0.068). There were no significant difference between E&S and E in changes in 40-min all-out trial (4 ± 6% vs. ?1 ± 6%, respectively, P = 0.13). These beneficial effects may encourage elite cyclists to perform heavy strength training and the short period of only 10 weeks should make it executable even in the compressed training and competition schedule of elite cyclists.  相似文献   

10.
In a randomised controlled trial design, effects of 6 weeks of plyometric training on maximal-intensity exercise and endurance performance were compared in male and female soccer players. Young (age 21.1 ± 2.7 years) players with similar training load and competitive background were assigned to training (women, n = 19; men, n = 21) and control (women, n = 19; men, n = 21) groups. Players were evaluated for lower- and upper-body maximal-intensity exercise, 30 m sprint, change of direction speed and endurance performance before and after 6 weeks of training. After intervention, the control groups did not change, whereas both training groups improved jumps (effect size (ES) = 0.35–1.76), throwing (ES = 0.62–0.78), sprint (ES = 0.86–1.44), change of direction speed (ES = 0.46–0.85) and endurance performance (ES = 0.42–0.62). There were no differences in performance improvements between the plyometric training groups. Both plyometric groups improved more in all performance tests than the controls. The results suggest that adaptations to plyometric training do not differ between men and women.  相似文献   

11.
In this study, changes in skiing performance and poling kinetics during a simulated cross-country sprint skiing competition were investigated. Twelve elite male cross-country skiers performed simulated sprint competition (4 × 1,150 m heat with 20 min recovery between the heats) using the double-poling technique. Vertical and horizontal pole forces and cycle characteristics were measured using a force plate system (20-m long) during the starting spurt, racing speed, and finishing spurt of each heat. Moreover, heat and 20-m phase velocities were determined. Vertical and horizontal pole impulses as well as mean cycle length were calculated. The velocities of heats decreased by 2.7 ± 1.7% (p = 0.003) over the simulated competition. The 20-m spurting velocity decreased by 16 ± 5% (p < 0.002) and poling time increased by 18 ± 9% (p < 0.003) in spurt phases within heats. Vertical and horizontal poling impulses did not change significantly during the simulation; however, the mean forces decreased (p < 0.039) (vertical by 24 ± 11% and horizontal by 20 ± 10%) within heats but not between the heats. Decreased heat velocities over the simulated sprint and spurting velocities within heats indicated fatigue among the skiers. Fatigue was also manifested by decreased pole force production and increased poling time.  相似文献   

12.
The aim of this study was to compare the training effects based on repeated sprint ability (RSA) (with one change of direction) with an intensive repeated sprint ability (IRSA) (with two changes of direction) on jump performance and aerobic fitness. Eighteen male basketball players were assigned to repeated sprint ability and intensive repeated sprint ability training groups (RSAG and IRSAG). RSA, IRSA, squat jump (SJ), countermovement jump (CMJ) and Yo-Yo intermittent recovery level 1 test were assessed before and after four training weeks. The RSA and IRSA trainings consisted of three sets of six sprints (first two weeks) and eight sprints (second two weeks) with 4-min sets recovery and 20-s of sprints recovery. Four weeks of training led to an overall improvement in most of the measures of RSA, but little evidence of any differences between the two training modes. Jump performance was enhanced: CMJ of 7.5% (< 0.0001) and 3.1% (= 0.016) in IRSAG and RSAG respectively. While SJ improved of 5.3% (= 0.003) for IRSAG and 3.4% (= 0.095) for RSAG. Conversely the Yo-Yo distance increased 21% (= 0.301) and 34% (= 0.017) in IRSAG and RSAG respectively. Therefore, short-term repeated sprint training with one/two changes of direction promotes improvements in both RSA and IRSA respectively but the better increase on jump performance shown a few changes on sprint and endurance performances.  相似文献   

13.
Abstract

To develop a track version of the maximal anaerobic running test, 10 sprint runners and 12 distance runners performed the test on a treadmill and on a track. The treadmill test consisted of incremental 20-s runs with a 100-s recovery between the runs. On the track, 20-s runs were replaced by 150-m runs. To determine the blood lactate versus running velocity curve, fingertip blood samples were taken for analysis of blood lactate concentration at rest and after each run. For both the treadmill and track protocols, maximal running velocity (v max), the velocities associated with blood lactate concentrations of 10 mmol · l?1 ( v 10 mM) and 5 mmol · l?1 ( v 5 mM), and the peak blood lactate concentration were determined. The results of both protocols were compared with the seasonal best 400-m runs for the sprint runners and seasonal best 1000-m time-trials for the distance runners. Maximal running velocity was significantly higher on the track (7.57 ± 0.79 m · s?1) than on the treadmill (7.13 ± 0.75 m · s?1), and sprint runners had significantly higher v max, v 10 mM, and peak blood lactate concentration than distance runners (P<0.05). The Pearson product – moment correlation coefficients between the variables for the track and treadmill protocols were 0.96 (v max), 0.82 (v 10 mM), 0.70 (v 5 mM), and 0.78 (peak blood lactate concentration) (P<0.05). In sprint runners, the velocity of the seasonal best 400-m run correlated positively with v max in the treadmill (r = 0.90, P<0.001) and track protocols (r = 0.92, P<0.001). In distance runners, a positive correlation was observed between the velocity of the 1000-m time-trial and v max in the treadmill (r = 0.70, P<0.01) and track protocols (r = 0.63, P<0.05). It is apparent that the results from the track protocol are related to, and in agreement with, the results of the treadmill protocol. In conclusion, the track version of the maximal anaerobic running test is a valid means of measuring different determinants of sprint running performance.  相似文献   

14.
To determine the effect of circadian rhythm on neuromuscular responses and kinematics related to physical tennis performance, after a standardised warm-up, 13 highly competitive male tennis players were tested twice for serve velocity/accuracy (SVA), countermovement vertical jump (CMJ), isometric handgrip strength (IS), agility T-test (AGIL) and a 10-m sprint (10-m RUN). In a randomised, counter-balance order, tennis players underwent the test battery twice, either in the morning (i.e., AM; 9:00 h) and in the afternoon (i.e., PM; 16:30 h). Paired t-tests were used to analyse differences due to time-of-day in performance variables. Comparison of morning versus afternoon testing revealed that SVA (168.5 ± 6.5 vs. 175.2 ± 6.1 km · h?1; P = 0.003; effect size [ES] = 1.07), CMJ (32.2 ± 0.9 vs. 33.7 ± 1.1 cm; P = 0.018; ES = 1.46), AGIL (10.14 ± 0.1 vs. 9.91 ± 0.2 s; P = 0.007; ES = 1.23) and 10-m RUN time (1.74 ± 0.1 vs. 1.69 ± 0.1 s; P = 0.021; ES = 0.67) were significantly blunted during the morning testing. However, IS was not affected by time-of-day (P = 0.891). Thus, tennis performance may be reduced when competing in the morning in comparison to early evening. Therefore, coaches and tennis players should focus on schedule the SVA, power, speed and agility training sessions in the afternoon.  相似文献   

15.
16.
ABSTRACT

This study compared the effects of dictating load using individual (ILVP) or group (GLVP) load-velocity profiles on lower-body strength and power. Nineteen trained males (23.6 ± 3.7 years) completed a back squat one-repetition maximum (1-RM), load-velocity profiling (LVP), and countermovement (CMJ), static-squat (SSJ) and standing-broad (SBJ) jump tests before and after 6 weeks of resistance training. Participants were randomly assigned to an ILVP, or GLVP intervention with intra-session load dictated through real-time velocity monitoring and prediction of current relative performance using either the participant’s LVP (ILVP) or a LVP based on all participant data (GLVP). Training resulted in significant increases in back squat 1-RM for the ILVP and GLVP group (p < 0.01; 9.7% and 7.2%, respectively), with no group-by-time interaction identified between training groups (p = 0.06). All jump performance significantly increased for the ILVP group (p < 0.01; CMJ: 6.6%; SSJ: 4.6%; SBJ: 6.7%), with only CMJ and SSJ improving for the GLVP group (p < 0.05; 4.3%). Despite no significant group-by-time interaction across all variables, the ILVP intervention induced a greater magnitude of adaptation when compared to a GLVP approach. Additionally, an individualised approach may lead to greater positive transfer to power-based movements, specifically vertical and horizontal jumps.  相似文献   

17.
Resisted sprint training consists of performing overloaded sprints, which may produce greater effects than traditional sprint training. We compared a resisted sprint training with overload control versus an unresisted sprint training program on performance in soccer players. Eighteen elite athletes were randomly assigned to resisted (RST) or unresisted sprint training protocol (UR). Before and after a 6-week training period, sprinting ability, change of direction speed (COD), vertical jumps (SJ and CMJ), mean power (MP) and mean propulsive power (MPP) at distinct loads were assessed. Both groups improved sprinting ability at all distances evaluated (5m: UR = 8%, RST = 7%; 10m: UR = 5%, RST = 5%; 15m: UR = 4%, RST = 4%; 20m: UR = 3%, RST = 3%; 25m: UR = 2%, RST = 3%;), COD (UR = 6%; RST = 6%), SJ (UR = 15%; RST = 13%) and CMJ (UR = 15%; RST = 15%). Additionally, both groups increased MP and MPP at all loads evaluated. The between-group magnitude-based inference analysis demonstrated comparable improvement (“trivial” effect) in all variables tested. Finally, our findings support the effectiveness of a short-term training program involving squat jump exercise plus sprinting exercises to improve the performance of soccer players.  相似文献   

18.
Purpose: Resistance training is often performed in a traditional training style using deliberate relatively longer repetition durations or in an explosive training style using maximal intended velocities and relatively shorter repetition durations. Both improve strength, “power” (impulsivity), and speed. This study compared explosive and traditional training over a 6-week intervention in 30 healthy young adult male recreational soccer players. Method: Full body supervised resistance training was performed 2 times a week using 3 sets of each exercise at 80% of one repetition maximum to momentary failure. Outcomes were Smith machine squat 1 repetition maximum, 10 meter sprint time, and countermovement jump. Results: Both groups significantly improved all outcomes based on 95% confidence intervals not crossing zero. There were no between-group differences for squat 1 RM (TRAD = 6.3[5.1 to 7.6] kg, EXP = 5.2[3.9 to 6.4] kg) or 10 meter sprint (TRAD = ?0.05[?0.07 to ?0.04] s, EXP = ?0.05[?0.06 to ?0.03] s). Explosive group had a significantly greater increase in countermovement jump compared to the traditional group (TRAD = 0.7[0.3 to 1.1] cm, EXP = 1.3[0.9 to 1.7] cm). Conclusion: Both the traditional training and explosive training performed to momentary failure produced significant improvements in strength, speed, and jump performance. Strength gains are similar independent of intended movement speed. However, speed and jump performance changes are marginal with resistance training.  相似文献   

19.
This assessor-blinded, randomized controlled superiority trial investigated the efficacy of the 10-week Nordic Hamstring exercise (NHE) protocol on sprint performance in football players.

Thirty-five amateur male players (age: 17–26 years) were randomized to a do-as-usual control group (CG; n = 17) or to 10-weeks of supervised strength training using the NHE in-season (IG; n = 18). A repeated-sprint test, consisting of 4 × 6 10 m sprints, with 15 s recovery period between sprints and 180 s between sets, was conducted to evaluate total sprint time as the primary outcome. Secondary outcomes were best 10 m sprint time (10mST) and sprint time during the last sprint (L10mST). Additionally, peak eccentric hamstring strength (ECC-PHS) and eccentric hamstring strength capacity (ECC-CAPHS) were measured during the NHE.

Ten players were lost to follow-up, thus 25 players were analyzed (CG n = 14; IG n = 11). Between-group differences in mean changes were observed in favor of the IG for sprint performance outcomes; TST (?0.649 s, p = 0.056, = 0.38), 10mST (?0.047 s, p = 0.005, = 0.64) and L10mST (?0.052 s, p = 0.094, = 0.59), and for strength outcomes; ECC-PHS (62.3 N, p = 0.006, = 0.92), and ECC-CAPHS (951 N, p = 0.005, = 0.95).

In conclusion, the NHE showed small-to-medium improvements in sprint performance and large increases in peak eccentric hamstring strength and capacity.

Trial Registration Number: NCT02674919  相似文献   

20.
The aim of this study was to evaluate the reliability of two long jump tasks and their ability to predict 10 m sprint performance in elite adolescent female athletes. Eight junior national-level female track and field athletes completed three standing (SLJ) and reactive long jumps (RLJ) on portable force plates, followed by three 10 m sprints. Intra-class correlation coefficients (ICC) and coefficients of variation (CV) were calculated to examine reliability. Linear regression results identified the best predictor of average and best 10 m sprint time from the jump kinematic and kinetic measures. The ICCs and CVs indicated good reliability for the majority of kinetic measures however, better reliability was reported for the SLJ. The SLJ was a good predictor of best and average 10 m sprint time, with average horizontal power the best predictor of performance (best; R 2 = 0.751, p = 0.003, Standard Error of Estimate (SEE)% = 2.2 average; R 2 = 0.708, p = 0.005, SEE% = 2.5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号