首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study compared heart rate (HR) measurements for the Fitbit Charge HR 2 (Fitbit) and the Apple Watch devices with HR measurements for electrocardiogram (ECG). Thirty young adults (15/15 females/males, age 23.5 ± 3.0 years) completed the Bruce Protocol. HR measurements were recorded from the ECG and both devices every minute. Average HR for each participant was calculated for very light, light, moderate, vigorous and very vigorous intensities based on ECG-measured HR. A concordance correlation coefficient (CCC) was calculated to examine the strength of the relationship between ECG measured HR and HR measured by each device. Relative error rates (RER) were also calculated to indicate the difference between each device and ECG. An equivalence test was conducted to examine the equivalence of HRs measured by devices and ECG. The Apple Watch showed lower RER (2.4–5.1%) compared with the Fitbit (3.9–13.5%) for all exercise intensities. For both devices, the strongest relationship with ECG-measured HR was found for very light PA with very high CCC (>.90) and equivalence. The strength of the relationship declined as exercise intensity increased for both devices. These findings indicate that the accuracy of real-time HR monitoring by the Apple Watch and Fitbit Charge HR2 is reduced as exercise intensity increases.  相似文献   

2.
The purpose of this study was to assess the accuracy of energy expenditure (EE) estimation and step tracking abilities of six activity monitors (AMs) in relation to indirect calorimetry and hand counted steps and assess the accuracy of the AMs between high and low fit individuals in order to assess the impact of exercise intensity. Fifty participants wore the Basis watch, Fitbit Flex, Polar FT7, Jawbone, Omron pedometer, and Actigraph during a maximal graded treadmill test. Correlations, intra-class correlations, and t-tests determined accuracy and agreement between AMs and criterions. The results indicate that the Omron, Fitbit, and Actigraph were accurate for measuring steps while the Basis and Jawbone significantly underestimated steps. All AMs were significantly correlated with indirect calorimetry, however, no devices showed agreement (p < .05). When comparing low and high fit groups, correlations between AMs and indirect calorimetry improved for the low fit group, suggesting AMs may be better at measuring EE at lower intensity exercise.  相似文献   

3.
The purpose of this study was to compare the accuracy of commercially-available physical activity devices when walking and running at various treadmill speeds using CTA 2056: Physical Activity Monitoring for Fitness Wearables: Step Counting, standard by the Consumer Technology Association (CTA). Twenty participants (10 males and 10 females) completed self-paced walking and running protocols on the treadmill for five minutes each. Eight devices (Apple iWatch series 1, Fitbit Surge, Garmin 235, Moto 360, Polar A360, Suunto Spartan Sport, Suunto Spartan Trainer, and TomTom Spark 3) were tested two at a time, one per wrist. Manual step counts were obtained from video to serve as the benchmark. The mean absolute percent error (MAPE) was calculated during walking and running. During walking, three devices: Fitbit Surge (11.20%), Suunto Sport (22.93%), and TomTom (10.11%) and during running, one device, Polar (10.66%), exceeded the CTA suggestion of a MAPE < 10%. The Moto 360 had the lowest MAPE of all devices for both walking and running. The devices tested had higher step accuracy with running than walking, except for the Polar. Overall, the Apple iWatch series 1, Moto 360, Garmin, and Suunto Spartan Trainer met the CTA standard for both walking and running.  相似文献   

4.
5.
The purpose of the current study was to determine the accuracy of the Fitbit Charge HR and Hexoskin smart shirt. Participants (n = 32, age: 23.5 ± 1.3 years) wore a Fitbit and Hexoskin while performing 14 activities in a laboratory and on a track (lying, sitting, standing, walking various speeds and inclines, jogging, and cycling). Steps, kcals, heart rate, breathing rate, depth, and volume were measured by the Fitbit and Hexoskin and compared to criterion measures. The Fitbit and Hexoskin had low mean absolute percent error for steps (9.7%, 9.4%). The mean absolute percent error was low for heart rate (6.6% and 2.4%), with the Fitbit underestimating heart rate at higher intensities. Both devices had high mean absolute percent error for kcals (43.7% and 27.9%, respectively), and the Hexoskin had high mean absolute percent error for breathing rate, depth, and volume (19.4%, 35.6%, and 33.6%, respectively). The Fitbit and Hexoskin have utility for measurement of some, but not all, physical activity and physiologic variables which they measure.  相似文献   

6.
ABSTRACT

There is a strong relationship between low physical activity level and cardiovascular diseases (CVD). The popularity of football may be used to promote physical activity and previous evidence has shown it is effective to decrease the risk of CVD. However, the energy expenditure (EE) of recreational football is not well known but it is crucial to develop preventive health programmes.

Fifteen sedentary middle-aged male participants were involved (mean ± SDs; age 43.9 ± 3.1 years, weight 83.0 ± 13.6 kg, height 174.9 ± 6.8 cm). EE was estimated from the heart rate (HR)-VO2 relation during 1-h 5-a-side matches (futsal). Participants covered 3412 ± 381 m in 52 ± 2 min, at an average HR of 85 ± 2% of maximum HR. Estimated EE during a recreational futsal match was 634 ± 92 kcal. One futsal recreational match corresponds to about 50% of American College of Sport Medicine recommended physical activity quantity per week. Based on this estimation: once, twice and 3 sessions per week are equivalent to 50% (634 kcal), 100% (1268 kcal) and 150% (1902 kcal), respectively, of EE suggested in international guidelines. This EE estimation may have important implications for designing recreational football training protocols in health programmes and dose response studies.  相似文献   

7.
ABSTRACT

A means of quantifying continuous, free-living energy expenditure (EE) would advance the study of bioenergetics. The aim of this study was to apply a non-linear, machine learning algorithm (random forest) to predict minute level EE for a range of activities using acceleration, physiological signals (e.g., heart rate, body temperature, galvanic skin response), and participant characteristics (e.g., sex, age, height, weight, body composition) collected from wearable devices (Fitbit charge 2, Polar H7, SenseWear Armband Mini and Actigraph GT3-x) as potential inputs. By utilising a leave-one-out cross-validation approach in 59 subjects, we investigated the predictive accuracy in sedentary, ambulatory, household, and cycling activities compared to indirect calorimetry (Vyntus CPX). Over all activities, correlations of at least r = 0.85 were achieved by the models. Root mean squared error ranged from 1 to 1.37 METs and all overall models were statistically equivalent to the criterion measure. Significantly lower error was observed for Actigraph and Sensewear models, when compared to the manufacturer provided estimates of the Sensewear Armband (p < 0.05). A high degree of accuracy in EE estimation was achieved by applying non-linear models to wearable devices which may offer a means to capture the energy cost of free-living activities.  相似文献   

8.
Wearable activity trackers have become popular for tracking individual’s daily physical activity, but little information is available to substantiate the validity of these devices in step counts. Thirty-five healthy individuals completed three conditions of activity tracker measurement: walking/jogging on a treadmill, walking over-ground on an indoor track, and a 24-hour free-living condition. Participants wore 10 activity trackers at the same time for both treadmill and over-ground protocol. Of these 10 activity trackers three were randomly given for 24-hour free-living condition. Correlations of steps measured to steps observed were r?=?0.84 and r?=?0.67 on a treadmill and over-ground protocol, respectively. The mean MAPE (mean absolute percentage error) score for all devices and speeds on a treadmill was 8.2% against manually counted steps. The MAPE value was higher for over-ground walking (9.9%) and even higher for the 24-hour free-living period (18.48%) on step counts. Equivalence testing for step count measurement resulted in a significant level within ±5% for the Fitbit Zip, Withings Pulse, and Jawbone UP24 and within ±10% for the Basis B1 band, Garmin VivoFit, and SenseWear Armband Mini. The results show that the Fitbit Zip and Withings Pulse provided the most accurate measures of step count under all three different conditions (i.e. treadmill, over-ground, and 24-hour condition), and considerable variability in accuracy across monitors and also by speeds and conditions.  相似文献   

9.
ABSTRACT

Purpose: The purpose of this study was to evaluate the agreement of five commercially available accelerometers in estimating energy expenditure while performing an acute bout of high-intensity functional training (HIFT). Methods: Participants (n = 47; average age: 28.5 ± 11.6 years) consisted of recreationally active, healthy adults. Each participant completed a session of HIFT: a 15-minute workout consisting of 12 repetitions each of air-squats, sit-ups, push-ups, lunges, pull-ups, steps-ups, and high-knees; performed circuit-style by completing as many rounds as possible. During this session, each participant wore the Cosmed K4b2 portable metabolic analyzer (PMA) and five different accelerometers (ActiGraph GT3X, Nike Fuelband, Fitbit One, Fitbit Charge HR, and Jawbone UP Move). Results: Four of the five activity trackers reported lower (p < .05) total EE values compared to the PMA during the acute bout of HIFT. The waist-mounted device (ActiGraph, 182.55 ± 37.93 kcal) was not significantly different from, and most closely estimated caloric expenditure compared to the PMA (144.99 ± 37.13 kcal) (p = .056). A repeated-measures ANOVA showed that all activity trackers were significantly different from the reference measure (PMA) (p < .05). Systematic relative agreement between the activity trackers was calculated, exhibiting a significant ICC = 0.426 (F [46,230] = 5.446 [p < .05]). Conclusion: The wrist- and hip-mounted activity trackers did not accurately assess energy expenditure during HIFT exercise. With the exception of the ActiGraph GT3X, the remaining four activity trackers showed inaccurate estimates of the amount of kilocalories expended during the HIFT exercise bout compared to the PMA.  相似文献   

10.

Purpose

To determine if 30 minutes of Nintendo Wii Sports boxing provides cardiorespiratory benefits and contributes to the daily exercise recommendations for healthy young adults.

Methods

Twenty healthy 23- to 27-year-olds participated in two sessions to measure maximum heart rate (HRmax) via a treadmill test and heart rate (HR) response to 30 minutes of Wii Sports boxing. Heart rate in beats per minute (bpm) was measured continuously, and exercise intensity during each minute of play was stratified as a percentage of HRmax. Mixed designs analysis of variance (ANOVA) and Pearson product moment correlations were used to analyze the data.

Results

Mean (SD) HR response to boxing was 143 (15) bpm or 77.5% (10.0%) of HRmax. The mean HR response for experienced participants was significantly lower than inexperienced participants, P = .007. The ANOVA revealed a significant interaction between experience and time spent at various intensities, P = .009. Experienced participants spent more time in light to vigorous intensities, inexperienced participants in moderate to very hard intensities. Fitness was not correlated with mean HR response to boxing, P = .49.

Conclusion

Thirty minutes of Nintendo Wii Sports boxing provides a moderate to vigorous aerobic response in healthy young adults and can contribute to daily recommendations for physical activity.Key Words: exergaming, cardiorespiratory training, active video games  相似文献   

11.
Physiological responses (intensity and recovery kinetics) and well-being indices were examined during a 4-day FIFA international tournament. Ten outfield New Caledonian players (age: 25.5 ± 3.8 years; height: 170 ± 7 cm; weight: 70.7 ± 8.6 kg) were assessed during the four matches. Players’ aerobic and anaerobic capacities were measured before the tournament while heart rate (HR), intra-matches recovery and well-being indices (Hooper index) were measured throughout the tournament. HR (168 ± 8 bpm), exercise intensity (83.4 ± 2.3% of HR reserve) and recovery indices were similar throughout the tournament. Well-being indices were largely alike during the tournament while rating of perceived exertion increased throughout the tournament that was not associated with HR or well-being indices. High aerobic and anaerobic capacities were associated with high match intensities and slow recovery indices. In summary, match intensity assessed by HR, recovery kinetics and well-being of Oceanian futsal players were not modified during a 4-day FIFA futsal tournament. Assessment of aerobic and anaerobic capacities may be useful to select players for optimal performance during this type of international tournament.  相似文献   

12.

Purpose

Large therapeutic rolls (LTR) and balls are popular rehabilitation tools and have also been advertised as cardiovascular training devices. The aim of this study was to determine if individuals of varying fitness levels would reach aerobic training levels by evidence-based standards as described in American College of Sports Medicine (ACSM) publications.

Methods

Fourteen volunteers performed a maximal exercise test and on subsequent days, two submaximal exercise tests on the LTR (LTR-A and -B). LTR-A consisted of four 5-minute stages of exercise at progressive intensity levels. LTR-B included 20 minutes of continuous exercise. Oxygen consumption (VO2) and heart rate (HR) during exercise on the LTR were compared with ACSM recommended standards.

Results

The average (range) peak intensity achieved during LTR-A was 66.8% (51.7-82.7%) of maximal VO2 reserve (VO2R) and 82.9% (70.7%-91.2%) of maximal heart rate (HRmax). During LTR-B, HR and VO2 of all participants was maintained at moderate exercise intensity and averaged 56% of VO2R and 78% of HRmax during the 20 minute exercise period.

Conclusions

These findings suggest that individuals with a wide range of aerobic fitness are able to reach and maintain aerobic training levels with appropriate exercise on a large therapeutic roll or ball.Key Words: large therapeutic roll, Swiss Ball, aerobic exercise, exercise intensity  相似文献   

13.
Although exercise promotes beneficial effects in diabetic patients, some studies have questioned the degree of their importance in terms of the increase in total energy expenditure. In these studies, the decrease of physical activity levels (PAL) was referred as “compensatory effect of exercise”. However, our aim was to investigate whether aerobic exercise has compensatory effects on PAL in type 2 diabetes patients. Eight volunteers (51.1 ± 8.2 years) were enrolled in a supervised exercise programme for 8 weeks (3 d · wk?1, 50–60% of VO2 peak for 30–60 min). PAL was measured using tri-axial accelerometers in the 1st, 8th and 12th weeks. Biochemical tests, cardiorespiratory fitness, anthropometric assessment and body composition were measured in the 2nd and 11th weeks. Statistical analysis was performed using non-parametric tests (Friedman and Wilcoxon, P < 0.05). We found no significant differences in PAL between intervention periods, and participants spent the majority of their awake time in sedentary activities. However, the exercise programme generated a significant 14.8% increase in VO2 peak and a 15% reduction in fructosamine. The exercise programme had no compensatory effects on PAL in type 2 diabetes patients, but improved their cardiorespiratory fitness and glycaemic control.  相似文献   

14.
Walking is one of the preferred exercises among elderly, but could a prolonged walking increase gait variability, a risk factor for a fall in the elderly? Here we determine whether 30 min of treadmill walking increases coefficient of variation of gait in elderly. Because gait responses to exercise depend on fitness level, we included 15 sedentary and 15 active elderly. Sedentary participants preferred a lower gait speed and made smaller steps than the actives. Step length coefficient of variation decreased ~16.9% by the end of the exercise in both the groups. Stride length coefficient of variation decreased ~9% after 10 minutes of walking, and sedentary elderly showed a slightly larger step width coefficient of variation (~2%) at 10 min than active elderly. Active elderly showed higher walk ratio (step length/cadence) than sedentary in all times of walking, but the times did not differ in both the groups. In conclusion, treadmill gait kinematics differ between sedentary and active elderly, but changes over time are similar in sedentary and active elderly. As a practical implication, 30 min of walking might be a good strategy of exercise for elderly, independently of the fitness level, because it did not increase variability in step and stride kinematics, which is considered a risk of fall in this population.  相似文献   

15.
The aim of this study is to determine changes in sedentary behaviour in response to extensive aerobic exercise training. Participants included adults who self-selected to run a marathon. Sedentary behaviour, total activity counts and physical activity (PA) intensity were assessed (Actigraph GT3X) for seven consecutive days during seven assessment periods (?3, ?2, and ?1 month prior to the marathon, within 2 weeks of the marathon, and +1, +2, and +3 months after the marathon). Models were fitted with multiple imputation data using the STATA mi module. Random intercept generalized least squares (GLS) regression models were used to determine change in sedentary behaviour with seven waves of repeated measures. Results: Twenty-three individuals (mean?±?Sx: 34.4?±?2.1y, 23.0?±?1.9% fat, 15 women, 8 men) completed the study. Marathon finishing times ranged from 185 to 344 minutes (253.2?±?9.6 minutes). Total counts in the vertical axis were 1,729,414 lower one month after the race, compared with two months prior to the race (peak training). Furthermore, counts per minute decreased by 252.7 counts·minute?1 during that same time period. Daily sedentary behaviour did not change over the seven assessment periods, after accounting for age, gender, per cent body fat, wear time, marathon finishing time, and previous marathon experience. This prospective study supports the notion that PA and sedentary behaviours are distinct, showing that sedentary behaviour was not impacted by high levels of aerobic training.  相似文献   

16.
To adhere to the principle of “exercise specificity” exercise testing should be completed using the same physical activity that is performed during exercise training. The present study was designed to assess whether aerobic step exercisers have a greater maximal oxygen consumption (max VO2) when tested using an activity specific, maximal step exercise test (SET; arms and legs) versus a maximal running test (legs only). Female aerobic step exercisers (N=18; 20.7 ± 1.5 years) performed three maximal graded exercise tests (GXTs): 2 SETs; 1 treadmill test (TMT). The SET consisted of six 3-min progressive stages of alternate lead, basic step, basic step with biceps curls, knee raise with pull-down, repeater knee with pull-down, lateral lunge with pull-down, and side squat with shoulder presses. Stepping rate was 32 steps· min?1 on an 8-in (20.32 cm) step for stages 1–3, and a 10-in (25.4 cm) step for stages 4–6. Submaximal and maximal heart rate (HR) and oxygen consumption (VO2) were recorded at the end of each stage. Test–retest reliability for the first five stages of the SET ranged from .91 to .97 for HR, and from .84 to .96 for VO2. Maximal HR was significantly greater (p =.0001) for the SET (200 ± 6.2 beats·min?1) as compared to the TMT (193 ± 7.9 beats·min?1). No significant difference was found for max VO2 (42.9 ± 8.5, 41.2 ± 5.9 ml·kg?1·min?1, p =.14). The SET was a valid and reliable protocol for assessing responses of these aerobic step exercisers; however, max VO2 from a TMT did not differ significantly from the SET. Conversely, max HR obtained from the criterion TMT was 7 beats·min?1 lower than from the SET. If a training HR for step exercise (arms and legs exercise) is prescribed based on the max HR from treadmill exercise (legs only), then the training HR should be calculated from a TMT max HR that has been increased by 7 beats·min?1 to obtain an intensity of step exercise comparable to that of running.  相似文献   

17.
The purpose of this study was to investigate the effects of interval aerobic training combined with strength exercise in the same training session on body composition, and glycaemic and lipid profile in obese rats. Sixteen lean Zucker rats and sixteen obese Zucker rats were randomly divided into exercise and sedentary subgroups (4 groups, n = 8). Exercise consisted of interval aerobic training combined with strength exercise in the same training session. The animals trained 60 min/day, 5 days/week for 8 weeks. Body composition, lipid and glycaemic profiles and inflammatory markers were assessed.

Results showed that fat mass was reduced in both lean and obese rats following the exercise training (effect size (95% confidence interval (CI)) = 1.8 (0.5–3.0)). Plasma low-density lipoprotein–cholesterol and fasting glucose were lower in the exercise compared to the sedentary groups (= 2.0 (0.7–3.2) and 1.8 (0.5–3.0), respectively). Plasma insulin was reduced in exercise compared to sedentary groups (= 2.1 (0.8–3.4)). Some exercise × phenotype interactions showed that the highest decreases in insulin, homeostatic model assessment-insulin resistance, fasting and postprandial glucose were observed in the obese + exercise group (all, P < 0.01). The findings of this study suggest that interval aerobic training combined with strength exercise would improve body composition, and lipid and glycaemic profiles, especially in obese rats.  相似文献   


18.
Aim was to identify critical load (CL) in young and elderly apparently healthy male cohorts. To contrast the metabolic, cardiovascular and perceptual responses on CL according to age. We evaluated 12 young (23 ± 3 years) and 10 elderly (70 ± 2 years) apparently healthy active males, who underwent: (1) 1 repetition maximum (1RM) test on a 45° Leg Press; (2) on different days, three high-intensity resistance exercise constant load tests (60%, 75% and 90% 1RM) until fatigue (Tlim). Absolute values of both the CL asymptote and curvature constant (kg) were significantly lower in elderly subjects (P < 0.05). In contrast, elderly subjects demonstrated a significantly higher number of repetitions at CL when compared with young subjects (P < 0.05). As expected, oxygen uptake (VO2) and heart rate (HR) during maximal aerobic exercise testing were significantly reduced in older subjects. However, percent-predicted aerobic capacity were higher in older subjects (P < 0.05). In addition, blood lactate ([La?]) corrected to Tlim and rating of perceived exertion values were greater in younger subjects at all intensities (P < 0.05). These findings, despite reduced force production in older subjects, endurance-related parameters are well preserved according to age-adjusted percent-predicted values in apparently healthy males.  相似文献   

19.
This study establishes tri-axial activity count (AC) cut-points for the GT3X+ accelerometer to classify physical activity intensity in overweight and obese adults. Further, we examined the accuracy of established and novel energy expenditure (EE) prediction equations based on AC and other metrics. Part 1: Twenty overweight or obese adults completed a 30 minute incremental treadmill walking protocol. Heart rate (HR), EE, and AC were measured using the GT3X+ accelerometer. Part 2: Ten overweight and obese adults conducted a self-paced external walk during which EE, AC, and HR were measured. Established equations (Freedson et al., 1998; Sasaki et al., 2011) overestimated EE by 40% and 31%, respectively (< .01). Novel gender-specific prediction equations provided good estimates of EE during treadmill and outdoor walking (standard error of the estimate = .91 and .65, respectively). We propose new cut-points and prediction equations to estimate EE using the GT3X+ tri-axial accelerometer in overweight and obese adults.  相似文献   

20.
Despite proprietary algorithms to account for differences, output from activity trackers worn on different wrists may not be comparable because individuals vary in their reliance on each hand during free-living activities.

Participants (n = 48) wore Fitbit Flex or Flex2 monitors on each wrist for three days. T tests, equivalence tests, and correlations were used to compare steps, Calories, distance, active minutes, and sleep duration recorded by dominant and nondominant wrist-worn monitors and effect sizes and mean absolute and percent difference were calculated.

The nondominant Flex2 monitor was not equivalent to the dominant wrist-worn monitor and recorded significantly more steps/day (absolute difference = 708), miles/day (0.3), and active minutes/day (7.9) than the dominant Flex2 monitor. For all variables, nondominant and dominant output was correlated (r>0.75).

Nondominant and dominant Flex2 monitors are significantly different, but there were small differences for Flex monitors. Research should investigate effects on behavior and replicate findings using other monitors.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号