首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
由二项式定理:(a+b)~n=C_n~0a~n+C_n~1a~(n-1)b+…+C_n~nb~n,(a-b)~n=C_n~0a~n-C_n~1a~(n-1)b+…+(-1)~nC_n~nb~n相加可得 (a+b)~n+(a-b)~n =2(C_n~ca~n+C_n~2a~(n-2)b~2+C_n~4a~(n-4)b~4+…)。(*)合理利用(*)式,可解答几类难度较大的问题。  相似文献   

2.
组合恒等式证明问题,一般难度较大,学生往往不易掌握。下面就来谈谈组合恒等式证明的几种方法。 1.置换法。在公式(a+b)~n=C_n~0a~n+C_n~1a~(n-1)b+C_n~2a~(n-2)b~2+…+C_n~ra~(n-r)b~r+…+C_n~nb~n中,适当地选择某个数来置换a和b,原恒等式即可得证。例1.求证:①2~n-C_n~12~(n-1)+C_n~22~(n-2)+…+(-1)~(n-1)C_n~(n-1)2+(-1)~n=1; ②3~n-C_n~13~(n-1)+C_n~23~(n-2)+…+(-1)~(n-1)C_n~(n-1)3+(-1)~n=2~n。  相似文献   

3.
1988年全国高中数学联赛第一试最后一题:已知a、b为正实数,且1/a 1/b=1,试证对每一个n∈N, (a b)~n-a~n-b~n≥2~(2n)-2~(n 1)(*) 这个不等式从形式上看较难证明,经过研究,笔者发现它有许多证法,择其简单的四种介绍如下: 证一应用二项式定理,得(a b)~n-a~n-b~n=C_n~1a~(n-1)b C_n~2a~(n-2)b~2 … C _n~(n-1)ab~(n-1) (1)根据组合数性质C_n~k=C_n~(n-k),由(1)得(a b)~n-a~n-b~n=C_n~1ab~(n-1) C_n~2a~2b~(n-2) 十… C_n~(n-1)a~(n-1)b (2)(1) (2)后两边除以2得  相似文献   

4.
现行高三数学中学到了二项式定理:(a+b)~n=C_n~0a~n+a_n~1a~(n-1)b+C_n~2a~(n-2)b~2+……+C_n~nb~n。若令a=1,b=1,代入上式,就得到(1+1)~n=C_n~0+C_n~1+C_n~2+……+C_n~n,这是全组合公式,即从n个元素中一个也不取,取一个、取二个、……、取n个元素的组合总数,那么(1+2)~n的展开式的组合原理是什么呢?或者说,它的数学模型是什么?下面我们先看一个具体问题。  相似文献   

5.
我们知道,由二项式定理 (a b)~n=a~n C_1~na~(n-1)b … C_n~(n-1)ab~(n-1) b~n可得 (a b)~n=aM_1 b~n; (a b)~n=a~2M_2 nab~(n-1) b~n; (a b)~n=a~n abM_i b~n; …………其中,M_i(i=1,2,3,…)是整式。利用上述性质可以证明一类多项式的整除问题。兹举例如下(本文中的n均为自然数): 例1 求证(x 1)~(2n 1) x~(n 2)能被x~2 x 1整除。  相似文献   

6.
1课堂奇遇从(a b)~2说起老师要讲新课——二项式(a b)~n的展开式了.他的提问从初中数学“和的平方公式”开始.题1在二项式(a b)~n中,分别求n=2和n=3的结果.解答根据乘法法则,分别有: (a b)~2=a~2 2ab b~2; (a b)~3=a~3 3a~2b 3ab~2 b~3.  相似文献   

7.
初中代数中关于多项式的七个乘法公式,可用类比的方法增强初学者的记忆,并使之能够自然地将它们推广到更一般的情形。 1.两数和的平方与立方公式比较下列三式: (a+b)~1=a+b,(A_1) (a+b)~2=a~2+2ab+b~2,(A_2) (a+b)~3=a~3+3a~2b+3ab~2+b~3.(A_3)可知这三个等式的右端具有下述特点: (1)它们都是与左端幂次相同的齐次式,即各项的次数均相同,都等于左端的幂次; (2)都按照字母a降幂排列,同时又都按照  相似文献   

8.
完全立方公式 (a+b)~3=a~3+3a~2b+3ab~2+b~3稍加变形,即得 a~3+b~3(a+b)~3-3ab(a+b) ① (a+b)~3=a~3+b~3+3ab(a+b) ②有些数学题,用这两个变形公式去解,更显得方便快捷。请看几例:  相似文献   

9.
关于二项式定理的证明,课本上用的是数学归纳法。数学教师也未提供其它的证明方法。经过探索,现提供一种新的简捷证法。定理: (a+b)~n=C_n~0+C_n~(n-1)b+···+C_n~ka~(n-k)b~k+···+C_n~(n-1)ab~(n-1)+C_n~nb~n (n∈)N  相似文献   

10.
a+b+c=0(a,b,c∈R),有许多简捷、优美的结论,且有着广泛的用途.结论1 若 a+b+c=0,则 b~2≥4ac 或a~2≥4bc 或c~2≥4ab.证明:因为 a+b+c=0,所以 b=-(a+c),b~2=(a+c)~2=a~2+c~2+2ac≥2ac+2ac=4ac,即 b~2≥4ac.同理可得,a~2≥4bc,c~2≥4ab.结论2 若 a+b+c=0,则 a~3+b~3+c~3=3abc.证明:因为 a+b+c=0,所以 a+b=-c,(a+b)~3=-c~3,即 a~3+3a~2b+3ab~2+b~3+c~3=0,也即 a~3+3ab·(a+b)+b~3+c~3=0,又 a+b=-c,所以 a~3+b~3+c~3  相似文献   

11.
完全平方公式的变形运用广泛,灵活多变,对学生解题能力的训练有很大的功效.现举几例说明它的应用. 完全平方公式的变形有如下几种形式: 1.(a+b)~2=(a~2+b~2)~2+2ab; 2.(a-b)~2=(a~2+b~2)~2-2ab; 3.(a+b)~2+(a-b)~2=2(a~2+b~2); 4.(a+b)~2-(a-b)~2=4ab.  相似文献   

12.
大家熟知的牛顿二项式定理是指下面的公式:(a+b)~n=c_n~0a~n+c_n~1a~(n-1)b+c_n~2a~(n-2)b~2+…+c_n~nb~n,(n∈N) (1)式(1)的右边的式子叫(a+b)~n的二项展开式,在教科书上,公式(1)的证明通常是采用数学归纳法,在本文中,我们将给二项式定理一种新的、有趣的证法,这种证法依赖于函数方程的解。  相似文献   

13.
本文试图从牛顿二项式定理和杨辉三角形数阵出发,将杨辉三角形加以推广,旨在建立牛顿多项式的系数数阵。一、牛顿二项式定理和杨辉三角形教阵。著名的二项式展开式 (α 6)~n=C_n~0α~n C_n~1α~(n-1)b C_n~2α~(n-2)b~2 …… C_n~rα~(n-r)b~r … C_n~nb~n (1)是英国著名的数学家牛顿首先提出的,并借助于组合种数公式的性质:C_n~r=C_n~(n-r)和C_n~r C_n~(r-1)=C_(n-1)~r加以证明的。因此,称此二项式的展开式为牛顿二项式定理。关于牛顿二项式定理的系数C_n~r,很早就有人研究。早在牛顿之前四百多年,我们中  相似文献   

14.
定理1 欲证 P≥Q,只需证 P Q≥2Q.例1 (《数学通报》数学问题解答1602)已知 a,b,c∈R_ ,求证:((a b)/(a c))a~2 ((b c)/(b a))b~2 ((c a)/(c b))c~2≥a~2 b~2 c~2 .证明:不等式可化为P=a~3b~2 b~3c~2 c~3a~2≥a~2b~2c ab~2c~2 a~2bc~2≥Q.P Q=(a~3b~2 ab~2c~2) (b~3c~2 a~2bc~2) (c~3a~2  相似文献   

15.
进行式的恒等变形时,常用到下面的技巧。一、同加、同减例(1) 已知(a+b)~2=7,(a-b)~2=3,求a~4+b~4的值。解:将(a+b)~2=7,(a-b)~2=3两式分别相加、相减得: 2(a~2+b~2)=10,4ab=4。即 a~2+b~2=5,ab=1 ∴ a~4+b~4=(a~2+b~2)~2-2a~2b~2=5~2-2×1~2=23。例(2) 设a>0,b>0,a~2+b~2=7ab,求证: lg[1/3(a+b)]=1/2(lga+lgb)。解:a~2+b~2=7ab等式两边同加上2ab得: (a+b)~2=9ab。即((a+b)/3)~2=ab,  相似文献   

16.
1988年全国高中数学联赛第一试第五题介绍了不等式:若 a,b>0且 a~(-1)+b~(-1=1,则(a+b)~-a~n-b~n≥2~2~n-2~(n+1),n∈N.(1)(1)式可推广为:若 a,b>0,则对 n∈N,总有(a+b)~n-a~n-b~n≥(2~n-2)(ab)_2~n≥2~n(2~n-2)(a~(-1)+b~(-1))~(-1).(2)本文将(2)式推广到多个变量的情形.定理若 k∈N,a_1,…,a_h>0,则对  相似文献   

17.
《苏教版·普通高中课程标准实验教科书·选修4~5(不等式选讲)》课本第20页有一道习题:设a≠b,求证:a~4 b~4>a~3b ab~3.证明:对任意不相等的实数a、b,总有:(a~4 b~4)-(a~3b ab~3) =(a-b)~2[(a b/2)~2 3/4b~2]>0.注意到原题的不等式两边是齐次式,我们可以从项数和指数两个方面进行推广.  相似文献   

18.
今年全国高等学校统一招生数学试题(理工农医类)中的附加题,源出于斐波那契数列,也是教材中一个习题的变形和发展。此题证法很多,下面略举几种。题已知以AB为直径的半圆有一个内接正方形CDEF,其边长为1(如图)。设AC=a,BC=b,作数列 u_1=a-b u_2=a~2-ab+b~2 u_3=a~3-a~2b+ab~2-b~3, ………… u_k=a~k-a~(k-1)b+a~(k-2)b~2-…+(-1)~kb~k;求证:u_n=u_(n-1)+u_(n-2) (n≥3)。证一由平面几何知识得 ab=AC·CB=CD~2=1, a-b=AC-CD=AC-AF=FC=1。由通项公式得  相似文献   

19.
高中数学学过 C_n~0+C_n~1+C_n~2+…+C_n~n=2~n, C_n~1+2C_n~2+…+nC_n~n=n·2~(n-1), 即sum from j=0 to n C_n~j=2~n,(1) sum from j=0 to n jC_n~j=n·2~(n-1)。(2)  相似文献   

20.
将完全平方公式(a+b)~2=a~2+2ab+b~2,(a-b)~2-2ab+b~2进行变形后易得以下几个公式:a~2+b~2=(a+b)~2-2ab=(a-b)~2+2ab,(a+b)~2=(a-b)~2+4ab(a-b)~2=(a+b)~2-4ab,(a+b)~2-(a-b)~2=2(a~2+b~2),(a+b)~2-(a-b)~2=4ab,(和差化积公式)ab=(a+b/2)~2-(a-b/2)~2.(积化和差公式)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号