首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lack of benefit of warm up on prolonged intermittent-sprint performance has been proposed to be due to use of a pacing strategy by participants. To investigate this, twelve participants performed four cycle trials that consisted of either prolonged intermittent-sprint performance (80 min) or single-sprint performance (4 s), with or without a warm up. The first-sprint of intermittent-sprint performance was also assessed. No interaction effects (P > 0.05) were found between trials for intermittent-sprint performance for total work (J · kg(-1)), or percentage work and power decrement. Work done during the first-sprint of intermittent-sprint performance (no warm up) was less (P < 0.001) than the first-sprint of intermittent-sprint performance (warm up; effect size (ES) = 0.59) and both single-sprint trials (warm up and no warm up; ES = 0.91, 0.75, respectively). Peak power (W · kg(-1)) for single-sprint (warm up) was greater (P < 0.05) than single-sprint (no warm up), and the first-sprint of intermittent-sprint performance (warm up and no warm up). Warm up improved single-sprint performance and the first sprint of intermittent-sprint performance. Use of a pacing strategy probably resulted in similar intermittent-sprint performance between trials. These results suggest that team-sport players should perform a warm up at the start of a game or before substitution during a game.  相似文献   

2.
The aim of this study was to determine the influence of type of warm-up on metabolism and performance during high-intensity exercise. Eight males performed 30 s of intense exercise at 120% of their maximal power output followed, 1 min later, by a performance cycle to exhaustion, again at 120% of maximal power output. Exercise was preceded by active, passive or no warm-up (control). Muscle temperature, immediately before exercise, was significantly elevated after active and passive warm-ups compared to the control condition (36.9 - 0.18°C, 36.8 - 0.18°C and 33.6 - 0.25°C respectively; mean - sx ) ( P ? 0.05). Total oxygen consumption during the 30 s exercise bout was significantly greater in the active and passive warm-up trials than in the control trial (1017 - 22, 943 - 53 and 838 - 45 ml O 2 respectively). Active warm-up resulted in a blunted blood lactate response during high-intensity exercise compared to the passive and control trials (change = 5.53 - 0.52, 8.09 - 0.57 and 7.90 - 0.38 mmol· l -1 respectively) ( P ? 0.05). There was no difference in exercise time to exhaustion between the active, passive and control trials (43.9 - 4.1, 48.3 - 2.7 and 46.9 - 6.2 s respectively) ( P = 0.69). These results indicate that, although the mechanism by which muscle temperature is elevated influences certain metabolic responses during subsequent high-intensity exercise, cycling performance is not significantly affected.  相似文献   

3.
The aim of this study was to determine the influence of type of warm-up on metabolism and performance during high-intensity exercise. Eight males performed 30 s of intense exercise at 120% of their maximal power output followed, 1 min later, by a performance cycle to exhaustion, again at 120% of maximal power output. Exercise was preceded by active, passive or no warm-up (control). Muscle temperature, immediately before exercise, was significantly elevated after active and passive warm-ups compared to the control condition (36.9 +/- 0.18 degrees C, 36.8 +/- 0.18 degrees C and 33.6 +/- 0.25 degrees C respectively; mean +/- sx) (P< 0.05). Total oxygen consumption during the 30 s exercise bout was significantly greater in the active and passive warm-up trials than in the control trial (1017 +/- 22, 943 +/- 53 and 838 +/- 45 ml O2 respectively). Active warm-up resulted in a blunted blood lactate response during high-intensity exercise compared to the passive and control trials (change = 5.53 +/- 0.52, 8.09 +/- 0.57 and 7.90 +/- 0.38 mmol x l(-1) respectively) (P < 0.05). There was no difference in exercise time to exhaustion between the active, passive and control trials (43.9 +/- 4.1, 48.3 +/- 2.7 and 46.9 +/- 6.2 s respectively) (P= 0.69). These results indicate that, although the mechanism by which muscle temperature is elevated influences certain metabolic responses during subsequent high-intensity exercise, cycling performance is not significantly affected.  相似文献   

4.
Nine well-trained, unacclimatized female hockey players performed the Loughborough Intermittent Shuttle Test (LIST) interspersed with three field hockey skill tests in hot (30 degrees C, 38% relative humidity) and moderate (19 degrees C, 51% relative humidity) environmental conditions. Field hockey skill performance declined in both the hot and moderate conditions following 30 and 60 min of the LIST compared with pre-LIST values (P < 0.01). This decrement in performance was compounded in the hot environment with a 6% poorer performance in the heat recorded for the second skill test at 30?min (P < 0.05, hot 101.7 +/- 3.6 vs moderate 95.7 +/- 2.9 s; mean +/- s(x)). However, no difference was found in the decision-making element of the skill test. Fifteen-metre sprint times were slower in the hot condition (P < 0.01). In the hot environment, rectal temperature (P < 0.01), perceived exertion (P < 0.05), perceived thirst (P < 0.01), blood glucose concentration (P < 0.05) and serum aldosterone concentration (P < 0.01) were higher. Estimated mean ( +/- s(x)) sweat rate was higher in the hot trial (1.27 +/- 0.10 l.h(-1)) than in the moderate trial (1.05 +/- 0.12 l.h(-1)) (P < 0.05). Body mass was well maintained in both trials. No differences in serum cortisol, blood lactate, plasma volume or plasma ammonia concentrations were found. These results demonstrate that field hockey skill performance is decreased following intermittent high-intensity shuttle running and that this decrease is greater in hot environmental conditions. The exact mechanism for this decrement in performance remains to be elucidated, but is unlikely to be due to low glycogen concentration or dehydration.  相似文献   

5.
Nine well-trained, unacclimatized female hockey players performed the Loughborough Intermittent Shuttle Test (LIST) interspersed with three field hockey skill tests in hot (30°C, 38% relative humidity) and moderate (19°C, 51% relative humidity) environmental conditions. Field hockey skill performance declined in both the hot and moderate conditions following 30 and 60?min of the LIST compared with pre-LIST values (P <?0.01). This decrement in performance was compounded in the hot environment with a 6% poorer performance in the heat recorded for the second skill test at 30?min (P <?0.05, hot 101.7?±?3.6 vs moderate 95.7?±?2.9?s; mean ±?s x). However, no difference was found in the decision-making element of the skill test. Fifteen-metre sprint times were slower in the hot condition (P <?0.01). In the hot environment, rectal temperature (P?<?0.01), perceived exertion (P?<?0.05), perceived thirst (P?<?0.01), blood glucose concentration (P?<?0.05) and serum aldosterone concentration (P?<?0.01) were higher. Estimated mean (?±?s x) sweat rate was higher in the hot trial (1.27?±?0.10?l?·?h?1) than in the moderate trial (1.05?±?0.12?l?·?h?1) (P?<?0.05). Body mass was well maintained in both trials. No differences in serum cortisol, blood lactate, plasma volume or plasma ammonia concentrations were found. These results demonstrate that field hockey skill performance is decreased following intermittent high-intensity shuttle running and that this decrease is greater in hot environmental conditions. The exact mechanism for this decrement in performance remains to be elucidated, but is unlikely to be due to low glycogen concentration or dehydration.  相似文献   

6.
Purpose: The aim of this study was to examine the effect of active versus passive recovery on 6 repeated Wingate tests (30-s all-out cycling sprints on a Velotron ergometer). Method: Fifteen healthy participants aged 29 (SD = 8) years old (body mass index = 23 [3] kg/m2) participated in 3 sprint interval training sessions separated by 3 to 7 days between each session during a period of 1 month. The 1st visit was familiarization to 6 cycling sprints; the 2nd and 3rd visits involved a warm-up followed by 6 30-s cycling sprints. Each sprint was followed by 4 min of passive (resting still on the ergometer) or active recovery (pedaling at 1.1 W/kg). The same recovery was used within each visit, and recovery type was randomized between visits. Results: Active recovery resulted in a 0.6 W/kg lower peak power output in the second sprint (95% confidence interval [CI] [ ? 0.2, ? 0.8 W/kg], effect size = 0.50, p < .01) and a 0.4 W/kg greater average power output in the 5th and 6th sprints (95% CI [+0.2,+0.6 W/kg], effect size = 0.50, p < .01) compared with passive recovery. There was little difference between fatigue index, total work, or accumulated work between the 2 recovery conditions. Conclusions: Passive recovery is beneficial when only 2 sprints are completed, whereas active recovery better maintains average power output compared with passive recovery when several sprints are performed sequentially (partial eta squared between conditions for multiple sprints = .38).  相似文献   

7.
In this study we examined the performance during, and the physiological and metabolic responses to, prolonged, intermittent, high-intensity shuttle running in hot (~30 C, dry bulb temperature) and moderate (~20 C) environmental conditions. Twelve male students, whose mean (s x ) age, body mass and maximal oxygen uptake (V O 2m ax ) were 22 ± 1 years, 69.8 ± 01.8 kg and 56.9 ± 1.1 ml . kg ?1 . min ?1 respectively, performed intermittent high- and low-speed running involving five sets of ~15 min of repeated cycles of walking and variable speed running followed by 60 s run/rest exercise until fatigue. The total distance completed in the hot and moderate trials was 8842 3790 m and 11,280 214 m respectively (P < 0.01). This decrement in performance occurred even though no differences existed in the level of dehydration, rating of perceived exertion, blood glucose and lactate, plasma free fatty acid and ammonia concentrations between the two trials. However, water consumption was almost twice as great in the hot trial (hot vs moderate: 1.18 ± 0.12 vs 0.63 ± 0.07 l . h ?1 , P < 0.01). Rectal temperature (hot vs moderate: 39.4 ± 0.1 vs 38.0 ± 0.1 C, P < 0.01) and heart rate (hot vs moderate: 186 ± 2 vs 179 ± 2 beats . min ?1 , P < 0.05) were higher at the end of the hot condition than at the same point in time in the moderate condition. The correlation between the rate of rise in rectal temperature and the distance completed during the hot condition was -0.94 (P < 0.01); for the moderate condition it was -0.65 (P <0.05). The reduced performance in the hot condition was associated with high body temperature; the precise mechanisms by which the performance decrement was brought about are, however, unclear.  相似文献   

8.
Diurnal variation in cycling performance: influence of warm-up   总被引:2,自引:0,他引:2  
We examined the effects of time of day on a cycling time trial with and without a prolonged warm-up, among cyclists who tended towards being high in "morningness". Eight male cyclists (mean +/- s: age = 24.9 +/- 3.5 years, peak power output = 319 +/- 34 W, chronotype = 39 +/- 6 units) completed a 16.1-km time trial without a substantial warm-up at both 07:30 and 17:30 h. The time trial was also completed at both times of day after a 25-min warm-up at 60% of peak power. Power output, heart rate, intra-aural temperature and category ratings of perceived exertion (CR-10) were measured throughout the time trial. Post-test blood lactate concentration was also recorded. Warm-up generally improved time trial performance at both times of day (95% CI for improvement = 0 to 30 s), but mean cycling time was still significantly slower at 07:30 h than at 17:30 h after the warm-up (95% CI for difference = 33 to 66 s). Intra-aural temperature increased as the time trial progressed (P < 0.0005) and was significantly higher throughout the time trials at 17:30 h (P = 0.001), irrespective of whether the cyclists performed a warm-up or not. Blood lactate concentration after the time trial was lowest at 07:30 h without a warm-up (P = 0.02). No effects of time of day or warm-up were found for CR-10 or heart rate responses during the time trial. These results suggest that 16.1-km cycling performance is worse in the morning than in the afternoon, even with athletes who tend towards 'morningness', and who perform a vigorous 25-min warm-up. Diurnal variation in cycling performance is, therefore, relatively robust to some external and behavioural factors.  相似文献   

9.
Abstract

Since the turn of the 21st century, there has been a resurgence of vibration technology to enhance sport science especially for power and force development. However, vibration exercise has been trialled in other areas that are central to athlete performance such as warm-up, flexibility and sprint speed. Therefore, the aim of this review was to attempt to gain a better understanding of how acute and short-term vibration exercise may impact on warm-up, flexibility and sprint speed. The importance of warming up for sporting performance has been well documented and vibration exercise has the capability to be included or used as a standalone warm-up modality to increase intramuscular temperature at a faster rate compared to other conventional warm-up modalities. However, vibration exercise does not provide any additional neurogenic benefits compared to conventional dynamic and passive warm-up interventions. Vibration exercise appears to be a safe modality that does not produce any adverse affects causing injury or harm and could be used during interval and substitution breaks, as it would incur a low metabolic cost and be time-efficient compared to conventional warm-up modalities. Acute or short-term vibration exercise can enhance flexibility and range of motion without having a detrimental effect on muscle power, however it is less clear which mechanisms may be responsible for this enhancement. It appears that vibration exercise is not capable of improving sprint speed performance; this could be due to the complex and dynamic nature of sprinting where the purported increase in muscle power from vibration exercise is probably lost on repeated actions of high force generation. Vibration exercise is a safe modality that produces no adverse side effects for injury or harm. It has the time-efficient capability of providing coaches, trainers, and exercise specialists with an alternative modality that can be implemented for warm-up and flexibility either in isolation or in conjunction with other conventional training methods.  相似文献   

10.
This study examined physiological and performance effects of pre-cooling on medium-fast bowling in the heat. Ten, medium-fast bowlers completed two randomised trials involving either cooling (mixed-methods) or control (no cooling) interventions before a 6-over bowling spell in 31.9±2.1°C and 63.5±9.3% relative humidity. Measures included bowling performance (ball speed, accuracy and run-up speeds), physical characteristics (global positioning system monitoring and counter-movement jump height), physiological (heart rate, core temperature, skin temperature and sweat loss), biochemical (serum concentrations of damage, stress and inflammation) and perceptual variables (perceived exertion and thermal sensation). Mean ball speed (114.5±7.1 vs. 114.1±7.2 km · h(-1); P = 0.63; d = 0.09), accuracy (43.1±10.6 vs. 44.2±12.5 AU; P = 0.76; d = 0.14) and total run-up speed (19.1±4.1 vs. 19.3±3.8 km · h(-1); P = 0.66; d = 0.06) did not differ between pre-cooling and control respectively; however 20-m sprint speed between overs was 5.9±7.3% greater at Over 4 after pre-cooling (P = 0.03; d = 0.75). Pre-cooling reduced skin temperature after the intervention period (P = 0.006; d = 2.28), core temperature and pre-over heart rates throughout (P = 0.01-0.04; d = 0.96-1.74) and sweat loss by 0.4±0.3 kg (P = 0.01; d = 0.34). Mean rating of perceived exertion and thermal sensation were lower during pre-cooling trials (P = 0.004-0.03; d = 0.77-3.13). Despite no observed improvement in bowling performance, pre-cooling maintained between-over sprint speeds and blunted physiological and perceptual demands to ease the thermoregulatory demands of medium-fast bowling in hot conditions.  相似文献   

11.
We examined the effects of time of day on a cycling time trial with and without a prolonged warm-up, among cyclists who tended towards being high in “morningness”. Eight male cyclists (mean?±?s: age = 24.9?±?3.5 years, peak power output = 319?±?34?W, chronotype = 39?±?6 units) completed a 16.1-km time trial without a substantial warm-up at both 07:30 and 17:30?h. The time trial was also completed at both times of day after a 25-min warm-up at 60% of peak power. Power output, heart rate, intra-aural temperature and category ratings of perceived exertion (CR-10) were measured throughout the time trial. Post-test blood lactate concentration was also recorded. Warm-up generally improved time trial performance at both times of day (95% CI for improvement = 0 to 30?s), but mean cycling time was still significantly slower at 07:30?h than at 17:30?h after the warm-up (95% CI for difference = 33 to 66?s). Intra-aural temperature increased as the time trial progressed (P <?0.0005) and was significantly higher throughout the time trials at 17:30?h (P = 0.001), irrespective of whether the cyclists performed a warm-up or not. Blood lactate concentration after the time trial was lowest at 07:30?h without a warm-up (P = 0.02). No effects of time of day or warm-up were found for CR-10 or heart rate responses during the time trial. These results suggest that 16.1-km cycling performance is worse in the morning than in the afternoon, even with athletes who tend towards ‘morningness’, and who perform a vigorous 25-min warm-up. Diurnal variation in cycling performance is, therefore, relatively robust to some external and behavioural factors.  相似文献   

12.
ABSTRACT

The effects of acute ingestion of nitrate on short-duration repeated sprint performance (RSP) are unclear. This study investigated the effect of acute ingestion of beetroot juice on a test of RSP in team sport athletes. Sixteen male team sport athletes undertook four trials using a 40 m maximum shuttle run test (MST), which incorporates 10 × 40 m shuttle sprints with 30 s between the start of each sprint. Two familiarisation trials, followed by nitrate-rich beetroot juice (BR; ~6 mmol nitrate) and nitrate-depleted beetroot juice (PLA; ~0.0034 mmol nitrate) trials were completed in a randomised, double-blind manner. Ingestion of beetroot juice 3 h prior to exercise elevated plasma nitrate concentrations ~6-fold in BR (BR, 413 ± 56 μM; PLA, 69 ± 30 μM; P < 0.001). RSP, assessed by sprint performance decrement (Sdec; %), did not differ (P = 0.337) between BR (5.31 ± 2.49%) and PLA (5.71 ± 2.61%). There was no difference between trials for total sprint time (P = 0.806), fastest sprint (P = 0.341), slowest sprint (P = 0.787), or post-exercise blood lactate concentration (BR, 11.8 ± 2.5 mM; PLA, 12.2 ± 2.3 mM; P = 0.109). Therefore, acute ingestion of beetroot juice did not improve a test of short-duration RSP in team sport athletes.  相似文献   

13.
In the present study, we examined the independent and combined effects of an inspiratory muscle warm-up and inspiratory muscle training on intermittent running to exhaustion. Twelve males were recruited to undertake four experimental trials. Two trials (Trials 1 and 2) preceded either a 4-week training period of 1 × 30 breaths twice daily at 50% (experimental group) or 15% (control group) maximal inspiratory mouth pressure (PImax). A further two trials (Trials 3 and 4) were performed after the 4 weeks. Trials 2 and 4 were preceded by a warm-up: 2 × 30 breaths at 40% PImax. Pre-training PImax and distance covered increased (P < 0.05) similarly between groups after the warm-up (~11% and ~5-7% PImax and distance covered, respectively). After training, PImax increased by 20 ± 6.1% (P < 0.01; d = 3.6) and 26.7 ± 6.3% (P < 0.01; d = 3.1) when training and warm-up were combined in the experimental group. Distance covered increased after training in the experimental group by 12 ± 4.9% (P < 0.01; d = 3.6) and 14.9 ± 4.5% (P < 0.01; d = 2.3) when training and warm-up interventions were combined. In conclusion, inspiratory muscle training and inspiratory muscle warm-up can both increase running distance independently, but the greatest increase is observed when they are combined.  相似文献   

14.
To examine the influence of pre-warming on the physiological responses to prolonged intermittent exercise in ambient temperatures of 21.5 +/- 0.6 degrees C and relative humidities of 35.7 +/- 5.4% (mean +/- s), six healthy men performed intermittent treadmill running (30-s bouts at 90% of maximal oxygen uptake separated by 30-s static recovery periods) to exhaustion after active pre-warming, passive pre-warming and pre-exercise rest (control). Exercise time to exhaustion was significantly different between all conditions (active, 51.8 +/- 7.2 min; passive, 38.5 +/- 11.1 min; control, 72.0 +/- 17.2 min; P < 0.05). These changes in performance time were closely associated with a significant decline in both the rate of heat storage and heat storage capacity (P < 0.05). Rectal temperature, heart rate and ratings of perceived exertion were significantly higher during exercise in the two pre-warming conditions than in the control condition (P < 0.05). Ratings of perceived exertion were also significantly higher during exercise following passive pre-warming compared with active pre-warming (P < 0.05). During exercise there were no significant differences in serum prolactin, plasma norepinephrine and plasma free fatty acid concentrations between conditions. We conclude that both active and passive pre-warming promote a reduction in prolonged intermittent exercise capacity in environmental temperatures of 21 degrees C compared with pre-exercise rest. These performance decrements were dependent upon the mode of pre-warming and closely reflected alterations in body heat content.  相似文献   

15.
The effect of active and passive recovery on repeated-sprint swimming bouts was studied in eight elite swimmers. Participants performed three trials of two sets of front crawl swims with 5 min rest between sets. Set A consisted of four 30-s bouts of high-intensity tethered swimming separated by 30 s passive rest, whereas Set B consisted of four 50-yard maximal-sprint swimming repetitions at intervals of 2 min. Recovery was active only between sets (AP trial), between sets and repetitions of Set B (AA trial) or passive throughout (PP trial). Performance during and metabolic responses after Set A were similar between trials. Blood lactate concentration after Set B was higher and blood pH was lower in the PP (18.29 +/- 1.31 mmol x l(-1) and 7.12 +/- 0.11 respectively) and AP (17.56 +/- 1.22 mmol x l(-1) and 7.14 +/- 0.11 respectively) trials compared with the AA (14.13 +/- 1.56 mmol x l(-1) and 7.23 +/- 0.10 respectively) trial (P < 0.01). Performance time during Set B was not different between trials (P > 0.05), but the decline in performance during Set B of the AP trial was less marked than in the AA or PP trials (main effect of sprints, P < 0.05). Results suggest that active recovery (60% of the 100-m pace) could be beneficial between training sets, and may compromise swimming performance between repetitions when recovery durations are short (< 2 min).  相似文献   

16.
Abstract

To determine the relative effectiveness of different warm-up activities in eliminating postrest warm-up decrement (WUD), 65 highly skilled tennis players performed 60 forehand and 60 backhand groundstrokes, rested for either 5 or 15 min, engaged in one of five interpolated activities (additional rest, running in place, imagery, practice swings, or air dribbling), and then performed 12 additional forehands and backhands. An analysis of differences between prerest and postrest arousal measures (heart rate, positive cognitive arousal, and negative cognitive arousal) revealed that all of the interpolated activities except additional rest restored arousal to levels near those found at the end of prerest trials. Postrest WUD was also eliminated by practice swings and air dribbling and, to a slightly lesser extent, by running in place. We concluded that an effective warm-up for open skills such as the tennis groundstroke should include some form of overt physical activity that directs the attention of the performer to task-relevant cues.  相似文献   

17.
Abstract

Three hundred male subjects, assigned in systematic rotation to five experimental groups (N = 60 in each) which differed in amount of distribution of practice, were tested on a discrete-trial motor learning task, the peg turn. All subjects were given 120 practice trials (60 trials a day), on two days separated by a 48-hour rest. Even though the peg turn task is inherently distributed, reminiscence did occur when the massing was made as large as practically possible. The amount of reminiscence depended upon the stage of practice. Warm-up decrement occurred in the peg turn under both massed and distributed practice conditions; the longer the rest, the greater the amount. Performance of the task under nonrhythmical conditions reduced the development of “set” during practice and thus decreased the amount of warm-up decrement after rest. Increased amounts of massing did have a deleterious effect on performance, but did not reduce the amount learned.  相似文献   

18.
In this study, we investigated the effects of two hydrotherapy interventions on match running performance and perceptual measures of fatigue and recovery during a 4-day soccer tournament. Twenty male junior soccer players were assigned to one of two treatment groups and undertook either cold-water immersion (5 × 1 min at 10 °C) or thermoneutral water immersion (5 × 1 min at 34 °C) after each match. High-intensity running distance (>15 km · h?1) and total distance covered, time spent in low (<80% maximum heart rate), moderate (80-90% maximum heart rate), and high (>90% maximum heart rate) heart rate zones, and rating of perceived exertion (RPE) were recorded for each match. Perceptions of general fatigue and leg soreness were recorded approximately 22 h after each match. There were decreases in both groups across the 4-day tournament for high-intensity running distance (P = 0.006, Cohen's d = 0.63), total distance run (P < 0.001, d = 0.90), time in high heart rate zone (P = 0.003, d = 0.90), and match RPE (P = 0.012, d = 0.52). Cold-water immersion was more effective than thermoneutral immersion for reducing the perception of leg soreness (P = 0.004, d = -0.92) and general fatigue (P = 0.007, d = -0.91), ameliorating the decrement in total distance run (P = 0.001, d = 0.55), and maintaining time in the moderate heart rate zone (P = 0.01, d = 1.06). In conclusion, cold-water immersion mediates the perceptions of fatigue and recovery and enhances the restoration of some match-related performance measures during a 4-day tournament.  相似文献   

19.
We tested the hypothesis that work-matched supramaximal intermittent warm-up improves final-sprint power output to a greater degree than submaximal constant-intensity warm-up during the last 30?s of a 120-s supramaximal exercise simulating the final sprint during sports events lasting approximately 2?min. Ten male middle-distance runners performed a 120-s supramaximal cycling exercise consisting of 90?s of constant-workload cycling at a workload corresponding to 110% maximal oxygen uptake (VO2max) followed by 30?s of maximal-effort cycling. This exercise was preceded by 1) no warm-up (Control), 2) a constant-workload cycling warm-up at a workload of 60%VO2max for 6?min and 40?s, or 3) a supramaximal intermittent cycling warm-up for 6?min and 40?s consisting of 5 sets of 65?s of cycling at a workload of 46%VO2max?+?15?s of supramaximal cycling at a workload of 120%VO2max. By design, total work was matched between the two warm-up conditions. Supramaximal intermittent and submaximal constant-workload warm-ups similarly increased 5-s peak (590?±?191 vs. 604?±?215W, P?=?0.41) and 30-s mean (495?±?137 vs. 503?±?154W, P?=?0.48) power output during the final 30-s maximal-effort cycling as compared to the no warm-up condition (5-s peak: 471?±?165W; 30-s mean: 398?±?117W). VO2 during the 120-s supramaximal cycling was similarly increased by the two warm-ups as compared to no-warm up (P?≤?0.05). These findings show that work-matched supramaximal intermittent and submaximal constant-workload warm-ups improve final sprint (~30?s) performance to similar extents during the late stage of a 120-s supramaximal exercise bout.  相似文献   

20.
We determined if performance and mechanical running alterations during repeated treadmill sprinting differ between severely hot and hypoxic environments. Six male recreational sportsmen (team- and racket-sport background) performed five 5-s sprints with 25-s recovery on an instrumented treadmill, allowing the continuous (step-by-step) measurement of running kinetics/kinematics and spring-mass characteristics. These were randomly conducted in control (CON; 25°C/45% RH, inspired fraction of oxygen = 20.9%), hot (HOT; 38°C/21% RH, inspired fraction of oxygen = 20.9%; end-exercise core temperature: ~38.6°C) and normobaric hypoxic (HYP, 25°C/45% RH, inspired fraction of oxygen = 13.3%/simulated altitude of ~3600 m; end-exercise pulse oxygen saturation: ~84%) environments. Running distance was lower (P < 0.05) in HOT compared to CON and HYP for the first sprint but larger (P < 0.05) sprint decrement score occurred in HYP versus HOT and CON. Compared to CON, the cumulated distance covered over the five sprints was lower (P < 0.01) in HYP but not in HOT. Irrespective of the environmental condition, significant changes occurred from the first to the fifth sprint repetitions (all three conditions compounded) in selected running kinetics (mean horizontal forces, P < 0.01) or kinematics (contact and swing times, both P < 0.001; step frequency, P < 0.001) and spring-mass characteristics (vertical stiffness, P < 0.001; leg stiffness, P < 0.01). No significant interaction between sprint number and condition was found for any mechanical data. Preliminary evidence indicates that repeated-sprint ability is more impaired in hypoxia than in a hot environment, when compared to a control condition. However, as sprints are repeated, mechanical alterations appear not to be exacerbated in severe (heat, hypoxia) environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号