首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一、正比例函数模型例1 若f(x+y)=f(x)+f(y)对任意实数x、y都成立,且f(x)不恒等于零,试判断f(x)的奇偶性. 联想因为k(x+y)=kx+ky,所以得出f(x)的模型函数为f(x)=kx. 分析正比例函数必过点(0,0),即f(0)=0,这是问题的突破口。  相似文献   

2.
1.两个重要结论结论1直线l:f(x,y)=0将平面分成两个区域,则有"同正异负",即(1)A(x1,y1),B(x2,y2)在l的同侧(?)f(x1,y1)·f(x2,y2)>0.(2)A(x1,y1),B(x2,y2)在l的异侧(?)f(x1,y1)·f(x2,y2)<0.(3)A(x1,y1)或B(x2,y2)在l上(?)f(x1,y1)·f(xz,y2)=0.结论2若点P(x,y)与定点A(x0,y0)在直线l的同侧(?)f(x,y)·f(x0,y0)>0.2.应用  相似文献   

3.
抽象函数问题是函数中综合性、技巧性、灵活性都比较强的问题,而函数的单调性又常常是解决此类问题的关键.笔者通过研究发现,巧用增量法,是解决此类问题的一大法宝,现举例说明. 一、"差"型增量 [例1]定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意x,y∈R,都有f(x+y)=f(x)·f(y).试判断函数f(x)在R上的单调性.  相似文献   

4.
贵刊2002年第2期《判断抽象函数单调性的几种策略》中的例8的解答有误,为便于说明,现摘抄原文于下: 例8 已知函数f(x)对于任何正实数x、y都有f(xy)=f(x)·f(y),且当x>1时,f(x)<1,试判断f(x)在(0, ∞)上的单调性并说明理由. 解任设 0 1, 因为x>1时,f(x)<1, 所以f(x2/x1)<1,  相似文献   

5.
任取x>o,y>。且x祥y,则z才‘t、z了.‘、 1.讨论f(习的单调性 例1已知函数y一f(x)对于任意实数x,y都有f(xy)一f(x)·f(贝,且当x>1时,f(x)<1,又f(x)并0.试判断f(二)在(0, oo)上的单调性.九(x) 2几(y)一3几解设。1, X1f(x2).f(与<1. X1·f(1)及f(x)护0,f(1)一1,f(二)=f(1)二1,=(x 1)2 2(夕 1)2一3 2,一下丁戈x一y少‘夕U, O学)三沪川即九(X, 2九(:)>3、祥沪) 一一)、、声夕11,塑x1f(件历式=f又f(l)可推出且所以,,1、J又—)一 1f(二)即有f(xZ)f(二z)<1.而对于任意f(x)都有 f(x)一‘厂(石·丫万) 一f(石)·f(不石)一尹叮于),因为…  相似文献   

6.
一、一个重要结论结论:直线l:f(x)=0将平面分成两个区域,则有“同正异负”,即⑴A(x1,y1),B(x2,y2)在l的同侧圳f(x1,y1)·f(x2,y2)>0.⑵A(x1,y1),B(x2,y2)在l的异侧圳f(x1,y1)·f(x2,y2)<0.⑶A(x1,y1),B(x2,y2)在l上圳f(x1,y1)·f(x2,y2)=0.推论:若点P(x,y)与定点A(x0,y0)在直线l的同侧圳f(x)·f(x0,y0)>0.二、结论的应用1.求取值范围例1已知直线l过点P(-1,2),且以A(-2,-3),B(3,0)为端点的线段相交,求直线l的斜率k的取值范围.分析:本题的解法虽然很多,但较繁且易出错,如数形结合、定比分点法等,而运用线性规划法则简捷且不易出错.解:原…  相似文献   

7.
抽象函数是指只给出函数的某些性质而未给出解析式的函数 ,它在历年的高考竞赛中常常出现 ,不少同学对此类问题的解法感到无从下手 ,为使抽象函数问题的解决有“章”可循 ,下面介绍几种常见的求解方法 .一、求值问题例 1 已知函数f(x)满足 :对任意x、y∈R都有f(x y2 ) =f(x) 2f2 (y)且f(1 )≠ 0则f(2 0 0 5) =     .解 :在f(x y2 ) =f(x) 2f2 (y)中 ,取x=y =0则f(0 ) =0 ,再取x =0 ,y =1代入得f(1 ) =2f2 (1 ) ,∵f(1 )≠ 0 ,∴f(1 ) =12 .在条件式中令x=n ,y=1则得递推式f(n 1 ) -f(n) =12 .∴数列 {f(n) }是首项为 12 ,公差…  相似文献   

8.
一、一个重要结论结论直线l:f(x,y)=0将平面分成两个区域,则有“同正异负”,即(1)A(x1,y1),B(x2,y2)在l的同侧(?)f(x1,y1)·f(x2,y2)>0.(2)A(x1,y1),B(x2,y2)在l的异侧(?)(x1,y1)·f(x2,y2)<0.(3)A(x1,y1),B(x2,y2)在l上(?)f(x1,y1)·f(x2,y2)=0.由以上结论,可得推论若点P(x,y)与定点A(x0,y0)在直线l的同侧(?)f(x,y)·f(x0,y0)>0.二、结论的应用1.求取值范围例1已知直线l过点P(-1,2),且与以A(-2,-3),B(3,0)为端点的线段相交,那么直线l的斜率k的取值范围是  相似文献   

9.
正1问题的提出在一节数学习题课上,笔者出示了这样一道题:设函数f(x)的定义域为R,当x0时,0f(x)1,而且对于任意的实数x,y都满足f(x+y)=f(x)f(y),求f(0)的值.让学生思考片刻后,笔者在黑板上给出了如下的解法:解令x=0,y0,代入f(x+y)=f(x)f(y),得f(0+y)=f(0)f(y).  相似文献   

10.
Ⅰ.正比例函数f(x)=kx(k≠0,x∈R)的抽象函数的特征式为:(1)f(x+y)=f(x)+f(y);(2)f(x-y)=f(x)-f(y);(3)f(xy)=k1f(x)f(y),特别地当k=1时,有f(xy)=f(x)f(y).例1:定义在R上的函数f(x),恒有f(x+y)=f(x)+f(y),若f(16)=4,那么f(2003)=.解法1(基本解法):令x=y=0,得f(0)=2f(0),∴f(0)=0.令y=-x,得f(x-x)=f(x)+f(-x),即f(-x)=-f(x),∴f(x)是奇函数.令y=x,得f(2x)=2f(x),f(22x)=f(2·2x)=2f(2x)=22f(x),…,f(2nx)=2nf(x).又∵f(16)=4,∴f(1)=41.∵f(2003)=f(211-25-23-22-1),∴f(2003)=f(211)-f(25)-f(23)-f(22)-f(1)=(211-25-23-22-1)·f(1)=20403.…  相似文献   

11.
问题已知f(x)的值域是(-5,-12],求y=1f(x)的值域.探究因为y=f(1x)在(-∞,0),(0, ∞)上都是单调递减函数,由题意知-5f(1x)≥-2,所以y=f(1x)的值域为[-2,-51).反思升华1若改变f(x)的值域为[12,5),求y=f(1x)的值域.探究因为y=f(1x)在(0, ∞)上是单调递减函数,由21≤f(x)<5,可得2≥f(1x)>51,所以y=1f(x)的值域为(51,2].反思升华2又若改变f(x)的值域为(-5,12],求y=f(1x)的值域.探究1因为f(x)∈(-5,21]不是y=f(1x)的单调区间,所以必须把f(x)的范围分成(-5,0),{0},(0,21].当f(x)=0时,y=f(1x)无意义(舍去);当f(x)∈(-5,0)时,f(…  相似文献   

12.
1 直线或曲线恒过定点的理论依据 1.1 由"f1(x,y) g(m)·f2(x,y)=0"求定点 在平面上如果已知两条曲线(包括直线)C1:f1(x,y)=0与C2:f2(x,y)=0相交,则f1(x,y) g(m)f2(x,y)=0的图象过C1,C2的交点.  相似文献   

13.
常用于判别函数图象对称性的命题可归纳如下:命题1 若函数y=f(x)满足f(a x)=f(b-x),则y=f(x)的图象关于直线x=a b2对称.证 在y=f(x)图象上取A(a x0,y0),B(b-x0,y0),则AB中点为(a b2,y0),且对任一x0都成立,由x0任意性可知f(x)的图象关于直线x=a b2对称.推论1 若函数y=f(x)满足f(a ωx)=f(b-ωx),则y=f(ωx)关于x=12ω(a b)对称,即y=f(x)关于x=a b2对称.证 设ωx=t,则f(a t)=f(b-t),从而函数y=f(t)关于t=a b2对称,即y=f(ωx)关于直线x=a b2ω对称,或y=f(x)关于直线x=a b2对称.命题2 函数y=f(x)若满足f(a x)=-f(b-x),则y=f(x)的图象关于…  相似文献   

14.
丁永刚 《高中生》2008,(18):20-21
原题已知函数f(x)的定义域为(0, ∞),且对于任意的正实数x、y都有f(xy)=f(x) f(y).当x>1时,f(x)>0,f(4)=1.(1)求证:f(1)=0.(2)求f(116).(3)解不等式:f(x) f(x-3)≤1.一、教学过程老师:如何证明f(1)=0?学生1:令x=1,y=1,得f(1)=f(1×1)=f(1) f(1)=2f(1),∴f(1)=0.学生2:令x=4,y=1  相似文献   

15.
正(2012年高考山东卷·理12)设函数f(x)=1x,g(x)=ax2+bx(a,b∈R,且a≠0)若y=f(x)的图像与y=g(x)图像有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是()A.当a0时,x1+x20,y1+y20B.当a0时,x1+x20,y1+y20C.当a0时,x1+x20,y1+y20D.当a0时,x1+x20,y1+y20分析一:令a=-2,b=3,1x=-2x2+3x,因式分解-(x-  相似文献   

16.
三、代数部分1.求所有实函数f、g、h :R→R ,使得对任意实数x、y ,有(x -y)f(x) +h(x) -xy +y2 ≤h(y)≤(x -y)g(x) +h(x) -xy +y2 .①(第 5 3届罗马尼亚数学奥林匹克 (第一轮 ) )解 :由式①得(x -y)f(x) ≤(x -y)g(x) .易知f(x) =g(x)对所有实数x均成立 .于是 ,有(x -y)f(x) +h(x) -xy +y2 =h(y) .令x =0 ,得h(y) =y2 -f(0 )y +h(0 ) ,即h是一个二次函数 .定义f(0 ) =a ,h(0 ) =b ,将h(y) =y2 -ay +b代入 ,有(x -y)f(x) +x2 -ax +b -xy+y2 =y2 -ay +b ,即  (x -y)f(x) +x(x -y) - (x -y)a =0 .由于x、y是任意实数 ,所以 ,f(x) =-x +a .经…  相似文献   

17.
首先请看如下两道题:例1函数y=f(x)满足f(1 x)=f(1-x),则f(x)的图象关于直线()(A)y=0对称.(B)x=0对称.(C)y=1对称.(D)x=1对称.例2函数y=f(1 x)与y=f(1-x)的图象关于直线()(A)y=0对称.(B)x=0对称.(C)y=1对称.(D)x=1对称.这两道题貌似接近,实则相去甚远,它们代表了本质上完全不同  相似文献   

18.
一、集合与函数创新题例1函数f(x)=x,x∈P,-x,x∈M .其中P,M为实数集R的两个非空子集,又规定:f(P)=邀y|y=f(x),x∈P妖,f(M)=邀y|y=f(x),x∈M妖,给出下列四个判断:①若P∩M=覫,则f(P)∩f(M)=覫②若P∩M≠覫,则f(P)∩f(M)≠覫③若P∪M=R,则f(P)∪f(M)=R④若P∪M≠R,则f(P)∪f(M)≠R其中正确判断有()A.3个B.2个C.1个D.0个解析①若P∩M=覫,不妨设P=邀x|x>x1妖,M=邀x|xx1)妖,f(M)=邀y|y=-x,(xx1妖,M=邀x|x相似文献   

19.
1.函数的定义及求值问题例1(2008年高考陕西卷)定义在R上的函数f(x)满足f(x y)=f(x) f(y) 2xy(x,y∈R),f(1)=2,则f(-3)等于().A.2B.3C.6D.9解:由f(1)=2,令x=y=1,得f(2)=f(1) f(1) 2=6.再令x=1,y=2,得f(3)=f(1) f(2) 4=12.取x=-y,得f(0)=f(x) f(-x)-2x2.由f(x y)=f(x) f(y) 2xy,  相似文献   

20.
导数是新教材第三册(选修Ⅱ)中的新添内容之一,教材主要介绍了导数在解题中判断函数单调及求函数极值与最值的应用,本文结合具体实例,就导数在解题中其它方面的几点应用作一下归纳,仅供读者参考.1判断函数图象例1设函数y=f(x)在定义域内可导,其图象如右图所示,则其导函数y=f′(x)的图象为()分析由y=f(x)的图象可以看出,当x<0时,y=f(x)是单调递增函数,由此可得:对任意x<0,f′(x)>0恒成立;所以可以排除(A)、(C);又因为x>0时,y=f(x)有两个极值点,所以x>0时,f′(x)=0有两个不等实根,且在两根左右两侧,f′(x)符号相反,因此答案应选(D).2化简例2…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号