首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aims of this study were to examine whether batters hit stationary balls at the time of peak speed of the bat head and whether the impact occurs at the lowest point of the bat trajectory. Eight university baseball players hit three balls, each hung with a string; each ball was made of a different material and was different in weight. Bat movement was captured by four 240-Hz infrared cameras and analysed three-dimensionally. Time for peak speed of the bat head varied according to the conditions. When stationary balls of standard weight were used, the bat head was at maximum speed at impact with the ball; then, it decelerated drastically owing to the impact. In contrast, maximum speed was obtained after impact when lightweight stationary balls were used. The time-speed profile of the bat head before impact in the lightweight ball condition was identical with that in the standard weight ball condition. Regardless of conditions, the timing of the lowest point of the bat head was nearly identical for each batter and most participants hit the stationary balls at about the lowest point of the bat trajectory.  相似文献   

2.
Baseball batters must react to pitches delivered to different locations within the strike zone by modulating their movements. In tee-batting practice, such batters place a ball on a tee stand at a location, where they intend to hit the ball, assuming a particular pitch’s trajectory. In the present study, we analysed three-dimensional movements in tee-batting to identify characteristics of the batters’ intended impact locations across the strike zone, thereby investigating spatiotemporal features of movement modulation. More specifically, 10 experienced baseball batters performed tee-batting at their preferred impact locations at nine different heights and courses within the strike zone. The distribution of impact locations showed regularity, i.e., the location shifted forward for balls placed high and inside, while it shifted backward for balls placed low and outside. Furthermore, trunk and arm movements showed systematic modulation as the impact locations changed. The duration of bat movement was also location dependent, i.e., hitting the inside ball took more time than hitting the outside ball. Our results indicate that even though movements among body segments were properly coordinated to adjust the bat swing for different impact locations, fine timing adjustments were also required to hit the ball at those preferred impact locations and therefore properly react to differences in flight paths.  相似文献   

3.
Swing trajectory and ground reaction forces (GRF) of 30 collegiate baseball batters hitting a pitched ball were compared between a standard bat, a bat with extra weight about its barrel, and a bat with extra weight in its handle. It was hypothesised that when compared to a standard bat, only a handle-weighted bat would produce equivalent bat kinematics. It was also hypothesised that hitters would not produce equivalent GRFs for each weighted bat, but would maintain equivalent timing when compared to a standard bat. Data were collected utilising a 500 Hz motion capture system and 1,000 Hz force plate system. Data between bats were considered equivalent when the 95% confidence interval of the difference was contained entirely within ±5% of the standard bat mean value. The handle-weighted bat had equivalent kinematics, whereas the barrel-weighted bat did not. Both weighted bats had equivalent peak GRF variables. Neither weighted bat maintained equivalence in the timing of bat kinematics and some peak GRFs. The ability to maintain swing kinematics with a handle-weighted bat may have implications for swing training and warm-up. However, altered timings of kinematics and kinetics require further research to understand the implications on returning to a conventionally weighted bat.  相似文献   

4.
The role of shaft stiffness on the golf swing is not well understood. Studies in which golfers hit balls with clubs of varying shaft flex have reported changes in ball distance. The results of mathematical models suggest that shaft stiffness affects only the orientation of the clubhead at impact, not the speed of the clubhead, but there are no experimental results validating these findings. The purpose of this study was therefore to experimentally examine the influence of shaft stiffness on clubhead kinematics at ball impact. Forty golfers hit 10 balls with each of five drivers varying in shaft stiffness from 'Ladies' to 'Extra-Stiff', in a double-blind study design. The motions of three reflective markers attached to the clubhead were captured with a high-speed motion analysis system. At ball impact, shaft stiffness had a statistically significant influence on clubhead speed for 27 subjects, on loft angle for 11 subjects, and on lie angle for all 40 subjects. No effect was observed on face angle, in to out path angle, or attack angle. These results show that shaft stiffness can affect ball launch conditions by altering clubhead speed and/or loft angle.  相似文献   

5.
Two groups of 10 novice subjects each were trained to perform attacking forehand drives in table tennis and land the balls as fast and as accurately as possible onto a target on the opposite side of the net under two different training conditions. Under the static training condition, the balls were to be struck from a constant position, and under the dynamic training condition, balls approached the subjects in a normal way. Both groups were tested under dynamic conditions prior to and after four days of training, during which they received 1,600 practice trials. Both groups of subjects were shown to increase the number of balls that landed on the target, and learning was also evident from an increased consistency of the direction of travel of the bat at the moment of ball/bat contact. However, no increase in consistency was found for the location of the bat at the moment of ball/bat contact and for the movement times. Thus, learning can occur in the absence of externally generated time-to-contact information, but this is not due to the establishment of a consistent movement form. Learning appears to progress from control at the moment of ball/bat contact backward, toward the moment of initiation.  相似文献   

6.
Experiment 1 examined whether it is more advantageous to direct learners' attention to the external effects of their movements relative to other external cues. Two groups of participants hit tennis balls at a target, with one group focusing on the ball coming toward them (antecedent) and the other group focusing on the ball leaving the racket (effect). The effect group demonstrated more effective learning. Experiment 2 examined whether it is more beneficial if the movement effect is related to the movement technique, relative to other movement effects (e.g., outcome). Two groups of participants hit golf balls at a target. The attention of these groups was directed to the club or the ball trajectory, respectively. The club group showed more effective learning than the target group, suggesting that focusing on technique-related effects is more effective.  相似文献   

7.
Abstract

Two groups of 10 novice subjects each were trained to perform attacking forehand drives in table tennis and land the balls as fast and as accurately as possible onto a target on the opposite side of the net under two different training conditions. Under the static training condition, the balls were to be struck from a constant position, and under the dynamic training condition, balls approached the subjects in a normal way. Both groups were tested under dynamic conditions prior to and after four days of training, during which they received 1,600 practice trials. Both groups of subjects were shown to increase the number of balls that landed on the target, and learning was also evident from an increased consistency of the direction of travel of the bat at the moment of ball/bat contact. However, no increase in consistency was found for the location of the bat at the moment of ball/bat contact and for the movement times. Thus, learning can occur in the absence of externally generated time-to-contact information, but this is not due to the establishment of a consistent movement form. Learning appears to progress from control at the moment of ball/bat contact backward, toward the moment of initiation.  相似文献   

8.
Three-dimensional kinematic data of bat and ball were recorded for 239 individual shots performed by twenty batsmen ranging from club to international standard. The impact location of the ball on the bat face was determined and assessed against the resultant instantaneous post-impact ball speed and measures of post-impact bat torsion and ball direction. Significant negative linear relationships were found between post-impact ball speed and the absolute distance of impact from the midline medio-laterally and sweetspot longitudinally. Significant cubic relationships were found between the distance of impact from the midline of the bat medio-laterally and both a measure of bat torsion and the post-impact ball direction. A “sweet region” on the bat face was identified whereby impacts within 2 cm of the sweetspot in the medio-lateral direction, and 4.5 cm in the longitudinal direction, caused reductions in ball speed of less than 6% from the optimal value, and deviations in ball direction of less than 10° from the intended target. This study provides a greater understanding of the margin for error afforded to batsmen, allowing researchers to assess shot success in more detail, and highlights the importance of players generating consistently central impact locations when hitting for optimal performance.  相似文献   

9.
The influence of moment of inertia on baseball/softball bat swing speed   总被引:1,自引:1,他引:0  
The speed at which a player can swing a bat is central to the games of baseball and softball, determining, to a large extent, the hit speed of the ball. Experimental and analytical studies of bat swing speed were conducted with particular emphasis on the influence of bat moment of inertia on swing speed. Two distinct sets of experiments measured the swing speed of colege baseball and fast-pitch softball players using weighted rods and modified bats. The swing targets included flexible targets, balls on a tee and machine pitched balls. Internal mass alterations provided a range of inertial properties. The average measured speeds, from 22 to 31 m s−1, are consistent with previous studies. Bat speed approximately correlates with the moment of inertia of the bat about a vertical axis of rotation through the batter's body, the speed generally decreasing as this moment of inertia increases. The analytical model assumes pure rotation of the batter/bat system about a vertical axis through the batter's body. Aerodynamic drag of the batter's arms and the bat is included in the model. The independent variable is bat moment of inertia about the rotation axis. There is reasonable agreement between the model and the measured speeds. Detailed differences between the two suggest the importance of additional degrees of freedom in determining swing speed.  相似文献   

10.
Abstract

The purpose of this study was to investigate whether performance level and ball spin affect arm and racket kinematics of the table tennis topspin forehand. Nine advanced and eight intermediate male table tennis players hit topspin forehands against light and heavy backspins. Five high-speed video cameras were used to record their strokes at 200 fps. Contributions of joint rotations to the racket speed, the racket kinematics at ball impact, the time required for racket acceleration and the maximum slope of the racket speed-time curve (s max) were determined. The advanced players showed a significantly larger contribution of lower trunk axial rotation to the racket speed at impact and a significantly larger value of smax, and tended to require a less time for racket acceleration than the intermediate players. The racket speed at impact was not significantly different between the two player groups. The players adjusted the racket face angle rather than the inclination of the racket path at impact to the different ball spins. The results suggest that the ability to accelerate the racket in less time in the topspin forehand against backspin balls may be an important factor that affects the performance level.  相似文献   

11.
A determination of the dynamic response of softballs   总被引:3,自引:3,他引:0  
An apparatus is described for measuring the stiffness and coefficient of restitution (COR) of balls with application to softballs. While standardized test methods currently exist to measure these properties, they do not represent the displacement rate and magnitude that occur in play. The apparatus described herein involves impacting a fixed, solid cylindrical surface (matched to the diameter of the bat) with a ball and measuring the impact force during impact and speed of the ball before and after impact. The ratio of the ball speeds determines the COR, while the impact force is used to derive a ball stiffness. For an example of the contribution of the new ball test, the performance of hollow bats, which is sensitive to ball stiffness, was compared. Bat performance showed a much stronger dependence on the proposed ball stiffness than the traditional measure. Finally, it was shown that to achieve similar conditions between impacts with fixed and recoiling objects, the impact speed should be chosen so that the centre of mass energy was the same in the two cases. The method has application to associations wishing an improved method to regulate ball and bat performance.  相似文献   

12.
The primary aim of this study was to compare the rebound characteristics of wooden and composite cricket bats. The rebound characteristics of two 'experimental' bats manufactured from composite material were compared with three English willow bats and one Kashmir willow bat. The bats were tested using a specially designed testing rig, which propelled a 156 g Kookaburra cricket ball at three impact speeds: fast-medium, 67 km x h(-1); fast, 101 km x h(-1); and express, 131 km x h(-1) on to the bats mounted in position so that the ball impacts occurred at the position where the blade of the bats was the thickest. The rebound characteristics of the bats were calculated by measuring the approach and rebound speeds of the ball as it passed through a light beam positioned a short distance away from the point of impact. The statistical software package SAS was used to test for significant differences (p < 0.05) between the average rebound characteristics of the bats. Further, Scheffé's method was used as a post hoc comparison to determine whether differences existed between the composite and willow bats. When the composite and traditional willow bats were compared, the results showed no significant differences between the three average approach speeds, while the composite bats showed significantly smaller rebound speeds and coefficient of restitution at all three approach speeds. Thus, the rebound characteristics of the composite bats were significantly less than the traditionally designed English willow wooden bats and would not enhance performance by allowing the batsman to hit the ball harder, assuming all other factors, such as bat speed, mass distribution and the impact point, were the same for the bats. Further study is required to determine the physical properties of composite and wooden bats to enhance their impact characteristics.  相似文献   

13.
The swing speed of the bat is one of the most important factors affecting the hit-ball speed. Most field studies tend to focus on measuring ball speed, which is easier to measure and quantify than bat speed. For this reason, relatively little data exist describing bat motion in field conditions. The following describes a relatively large swing speed field study involving bats of the same model with nearly constant weight and varying inertia. The study was conducted using right-handed batters on a regulation outdoor field with a live pitcher. Swing speed was measured by tracking markers on the bat with two high-speed video cameras so that the bat markers could be traced in three-dimensional space. The ball motion was tracked using the same high-speed video cameras and a three-dimensional Doppler radar system. Bat swing speed was observed to be proportional to the batter skill level and the normalised swing speed increased with decreasing bat inertia. The bat centre of rotation during impact was close to the knob of the bat. The bats were tested under controlled laboratory conditions using a standardised performance test. The field and laboratory results showed good agreement including the hit-ball speed and the subtle effect of bat inertia on the maximum performance location. The vibrational response of the bats was considered using modal analysis. The maximum performance location was correlated with the node of the first vibrational mode.  相似文献   

14.
The purpose of this paper was to examine whether the ball position and wrist action (different types of torque application) could be optimised to increase the horizontal golf club head speed at impact with the ball. A two-dimensional double pendulum model of the golf downswing was used to determine to what extent the wrist action affected the club head speed in a driver, and how this affected the optimum ball position. Three different patterns of wrist actions (negative, positive, and negative-positive torque at the wrist) were investigated; and two criteria (maximum and impact criteria) were used to assess their effectiveness in terms of the maximum horizontal club head speed, and the club head speed as the shaft becomes vertical when viewed ‘face-on’. The simulation results indicated that the horizontal club head speed at impact could be increased by these patterns of wrist actions and the optimum ball position could be determined by the impact criterion. Based on the analysis of the energy flow from the input joints of shoulder and wrist to the arm and club head, the way the wrist action affects the club head speed has been discussed. The sensitivity of the results to small changes in model parameter values and initial conditions was investigated. The results were also examined under different torque patterns.  相似文献   

15.
We investigated the techniques used by nine right-handed, international batsmen to perform front foot off-side drives in first class and international matches. All strokes were captured using two synchronised high-speed video cameras; nine were selected for kinematic analysis. These movement sequences were then manually digitised at a sampling frequency of 125 Hz using APAS motion analysis software. The results of this study indicated that the batsmen used movement patterns that enabled important aspects of stroke production, such as the front stride and the downswing of the bat, to be delayed so that additional information from ball flight could be assimilated. Front upper limb segments were constrained to work in a unitary fashion, with the peak horizontal end point speed of each segment occurring almost simultaneously just before impact. It has been suggested that these strategies serve to enhance stroke accuracy. Other aspects of their techniques included a distinctively looped bat path, a front foot placement that occurred only just before impact, and a front ankle that was positioned well inside the line of the ball at impact. Various technical parameters, such as the alignment of the trunk relative to ground and the continuous flow of the bat between the backswing and downswing, were similar to findings in previous batting research. Other characteristics of stroke production not previously addressed, including the path of the bat and the timing of the front stride, may challenge some long held beliefs evident in current coaching literature.  相似文献   

16.
The purpose of this study was to construct and evaluate the reliability of an apparatus for testing golf putters with respect to distance and direction deviation at different impact points on the clubface. An apparatus was constructed based on the pendulum principle that allowed putter golf clubs to swing at different speeds. The mean speed of the club head before ball impact, and of the ball after impact, was calculated from time measurements with photocells. A pin profile rig was used to determine the directional deviation of the golf ball. Three different putters were used in the study, two that are commercially available (toe-heel weighted and mallet types) and one specially made (wing-type) putter. The points of impact were the sweet spot (as indicated by the manufacturer's aim line), and 1, 2 and 3 cm to the left and right of the sweet spot. Calculation of club head speed before impact, and of ball speed after impact (proportional to distance), showed errors < or = 0.5% of interval duration. The variability in ball impacts was tested by measuring time and direction deviations during 50 impacts on the same ball. The mean duration (+/- s) after ball impact in the test interval (1.16 m long) was 206 (0.8) ms and the standard deviation in the perpendicular spreading of the balls in relation to the direction of the test interval was 0.005 m. A test-retest of one putter on two consecutive days after remounting of the putter on the test apparatus showed less than 1% difference in distance deviation. We conclude that the test apparatus enables a precise recording of distance and direction deviation in golf putters as well as comparisons between different putters. The apparatus and set-up can be used in the laboratory as well as outdoors on the putting green.  相似文献   

17.
The influence of impact sound in putting on players' perceptions of "feel" is explored in this paper. Tests were conducted to investigate the impact sound characteristics of five different ball types using two different putter types. The first test studied the impact sound of purely the ball, while the second test investigated the influence of putter construction and impact location on impact sound for the different ball types. Trends were found between sound spectra peaks in the 2 - 4 kHz range and the compression values of the balls. In addition, frequency content was more dependent on putter type and impact location than on ball construction in the 0 - 2 kHz range. The final test employed a paired comparison technique to investigate players' perceptions of sharpness and loudness of impact sound, ball speed from the clubface and ball hardness. Relationships between the subjective data and the sound characteristics of the balls were then examined. It was found that the ball the players' perceived to have the sharpest and loudest sound, to feel the hardest and to come off the clubface the quickest also had the largest calculated values of loudness and sharpness and had a spectral peak at a higher frequency than the other balls.  相似文献   

18.
Soccer equipment manufacturers invest significant amounts of time and money researching and developing soccer balls, using advanced materials and constructions in an attempt to create a ball that has better flight and impact characteristics. An important consideration in any structure subject to dynamic or impact loading is its mechanical response. The recent development of non-contact optical vibration measurement tools such as the SLDV have made the accurate measurement of such responses possible. The technique of vibrometry utilises the Doppler principle to provide a measure of the surface velocity at the point at which a laser beam is incident. The SLDV benefits from its non-contact and non-marking method, and the speed and ease with which measurements can be recorded. This paper reports the method and results from a study aimed at determining the dynamic responses of two different soccer balls. The balls were excited using an acoustic source and the velocity of each ball’s surface at a series of points was recorded. The natural frequencies and vibration mode shapes were identified and a comparison made between the responses of each ball. Significant mode shapes were observed between 150 Hz and 1500 Hz. At the lower frequencies, the mode shapes were observed to be independent of the outer panels, based more on the structure of the ball as a whole. At higher frequencies, one of the balls tested showed mode shapes centred on individual panel oscillations. The soccer balls tested show some noticeable differences in mode shapes.  相似文献   

19.
The sweet spot of a cricket bat for low speed impacts   总被引:2,自引:1,他引:1  
The impact location of a cricket ball on a cricket bat has a large influence on the resulting rebound velocity of the ball. To measure this, a cricket bat was swung in a pendulum motion towards a cricket ball suspended in space. The position of the ball was modified so that it impacted the bat at 24 different positions on the face of the bat. This included six positions longitudinally and four positions laterally. The speed of the bat and each rebound were measured by a radar gun so that the apparent coefficient of restitution (ACOR) could be calculated. Impacts occurring centrally and 1?cm either side of the midline produced significantly higher rebound speeds and ACOR??s than impacts occurring 2 and 3cm off centre (p?<?0.01). Impacts occurring 15?C20?cm from the base of the bat produced the highest rebound speeds (p?<?0.01) and impacts occurring 20?C30?cm from the base of the bat produced the highest ACOR values. Implications for higher speed impacts and game scenarios are discussed.  相似文献   

20.
Abstract

The influence of impact sound in putting on players' perceptions of “feel” is explored in this paper. Tests were conducted to investigate the impact sound characteristics of five different ball types using two different putter types. The first test studied the impact sound of purely the ball, while the second test investigated the influence of putter construction and impact location on impact sound for the different ball types. Trends were found between sound spectra peaks in the 2 – 4 kHz range and the compression values of the balls. In addition, frequency content was more dependent on putter type and impact location than on ball construction in the 0 – 2 kHz range. The final test employed a paired comparison technique to investigate players' perceptions of sharpness and loudness of impact sound, ball speed from the clubface and ball hardness. Relationships between the subjective data and the sound characteristics of the balls were then examined. It was found that the ball the players' perceived to have the sharpest and loudest sound, to feel the hardest and to come off the clubface the quickest also had the largest calculated values of loudness and sharpness and had a spectral peak at a higher frequency than the other balls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号