首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
<正>已知椭圆(x2)/(a2)/(a2)+(y2)+(y2)/(b2)/(b2)=1(a>b>0)与直线l相交于M,N两点,点P(x_0,y_0)是弦MN的中点,则由点差法可得直线l的斜率k=-(b2)=1(a>b>0)与直线l相交于M,N两点,点P(x_0,y_0)是弦MN的中点,则由点差法可得直线l的斜率k=-(b2)/(a2)/(a2)·(x_0)/(y_0)。这类涉及椭圆弦的中点问题就是中点弦问题,解决这类问题通常用点差法。本文就用具体的例子来谈谈这类问题的解法。例1已知椭圆(x2)·(x_0)/(y_0)。这类涉及椭圆弦的中点问题就是中点弦问题,解决这类问题通常用点差法。本文就用具体的例子来谈谈这类问题的解法。例1已知椭圆(x2)/(a2)/(a2)+(y2)+(y2)/(b2)/(b2)=1(a>b>0)的  相似文献   

2.
性质1:已知椭圆方程(x~2)/(a~2) (y~2)/(b~2)=1(a>b>0),AB是过中心的弦,C为椭圆上不同于A、B的动点,在点A处的切线为l_1,在C点处的切线为l_2,两切线交于E点,l_(CB)与l_1交于点D,则DE=EA.  相似文献   

3.
问题 (1) 设A为动椭圆的中心,BD为过焦点F的弦,M为BD的中点,连接AM并延长交椭圆于点C.求证:四边形ABCD为平行四边形的充要条件是(|BD|)/(a)为定值且值为(3)/(2) (其中a为椭圆的长半轴长).  相似文献   

4.
笔者最近在研究圆锥曲线时,发现圆锥曲线的一个奇妙性质,现介绍如下:定理1已知椭圆E:(x~2)/(a~2) (y~2)/(b~2)=1(a>b>0),过不在椭圆E上的定点T(m,n)作定直线l:(mx)/(a~2) (ny)/(b~2)=1的垂线TD,垂足为D,过T引  相似文献   

5.
设A(x1,y1),B(x2,y2)是圆锥曲线上不同的两点,G(xA,yB)是线段AB的中点,kAB是AB弦所在直线的斜率.则有:(1)椭圆(x2)/(a2)+(y2)/(b2)=1,kAB=-(b2xA)/(a2yB)(2)双曲线三(x2)/(a2)-(y2)/(b2)=1,kAB=-(b2xA)/(a2yB);(3)抛物线y2=2px(p>0),kAB=P/(yA).证明:(1)因A、B两点在椭圆(x2)/(a2)+(y2/b2)=1上,所以有  相似文献   

6.
结论 从圆O外一点P引圆的两条切线 PA、PB,切点分别为A、B,则切点弦AB被直线 OP垂直平分. 此结论可推广到椭圆、双曲线和抛物线. 1.从不在椭圆(x2)/(a2) (y2)/(b2)=1(a>b>0)对称轴 上的任意一点P引椭圆的两条切线PA、PB,切 点分别为A、B,则切点弦AB被直线OP平分,且 直线AB和OP的斜率之积为定值-(b2)/(a2).  相似文献   

7.
轨迹问题设PQ是椭圆(x~2)/(a~2) (y~2)/(b~2)=1(a>b>0)的弦,且PQ与x轴垂直,A_1,A_2是椭圆的左右顶点,求直线PA_1和QA_2交点的轨迹.解:由题意不妨设P(x_0,y_0),Q(x_0,-y_0),又知A_1(-a,0),A_2(a,0),故得直  相似文献   

8.
椭圆以某定点为中点的弦并非一定存在,那么,中点弦存在的充要条件是什么?有何应用,本文作下列探讨: 一中点弦方程的一种求法。设椭圆b~2x~2 a~2y~2-a~2b~2=0,(a>0,b>0)…(1) 及定点P_0(x_0,y_0),若以P_0为中点的弦存在,且两端点分别为A(x_1,y_1),B(x_2,y_2) 则:b~2x_1~2 a~2y_1~2-a~2b~2=0 b~2x_2~2 a~2y_2~2-a~2b~2=0 两式相减整理得: (y_1-y_2)/(x_1-x_2)=(x_1 x_2)/(y_1 y_2)·b~2/a~2 =-b~2/a~2·x_0/y_0 (x_1≠x_2) 即k=-(b~2x_0)/(a~2y_0),代入点斜式得中点弦方程:a~2y_0y b~2x_0x=a~2y_0~2 b~2x_0~2……(2) 如果x_1=x_2,那么y_0=0,中点弦方程为x=x_0仍包含在(2)中。  相似文献   

9.
在许多高三数学复习资料中有这样一道题:"已知椭圆(x2)/(4) (y2)/(9)=1上有一点P(1,(3(√3))/2),A,B是椭圆上异于点P的另外两点,若直线PA,PB的倾斜角互补,求证直线AB的斜率为定值."通过对这个问题的研究,笔者得到了一些与定向弦(如果点A,B在一条二次曲线上,那么我们就把AB称为这条二次曲线的一条弦.如果直线AB的斜率为定值,我们则称AB是这条二次曲线的定向弦)相关的有趣性质.  相似文献   

10.
利用极坐标系解圆锥曲线题的应用,课本上的介绍不多,应用时,应根据不同情形建立不同的极坐标系,以便灵活地解题。一、建立焦点极坐标系涉及与圆锥曲线的焦点弦有关的问题,应以焦点为极点的极坐标系(简称焦点极坐标系),这时椭圆、双曲线和抛物线有统一的方程ρ=(ep)/(1-ecosθ)。例1 过双曲线(x~2)/(a~2)-(y~2)/(b~2)=1的右焦点F的弦AB(AB不垂直于实轴),AB的中垂线交x轴于D,求证|FD|=e/2|AB|(e为离心率) 证明:如图,以右焦点F为极点,Fx  相似文献   

11.
文[1]讨论了椭圆中的一个比值问题,笔者认为文中的定理2应更正为:结论P(x_0,y_0)是椭圆(x~2)/(a~2) (y~2)/(b~2)=1(a>b>0)外的一个定点,过点P的直线与椭圆交于A,B两点,则P分(?)的比γ的取值范围是  相似文献   

12.
胡桂松 《数学教学》2007,(10):38-39,34
题目如图1,椭圆(x~2)/(a~2) (y~2)/(b~2)=1(a>6>0)与过点A(2,0)、B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=(3)~(1/2)/(?).  相似文献   

13.
<正>定义:如图1,设F1,F2是椭圆x2/a2+y2/b2=1(a>b>0)的焦点,P是椭圆上的任意一点(异于长轴的端点),则称△F1PF2为椭圆的焦点三角形.性质一:过椭圆焦点的所有弦中通径(垂直于焦点的弦)最短,通径为2b2/a.  相似文献   

14.
圆有个很重要的性质叫"垂径定理":若AB为⊙O的一条弦,P为AB的中点,则k_(OP)·k_(AB)=-1.这一性质可以在圆锥曲线中进行推广,而且有很好的应用价值.(为叙述方便,下文把推广的结论都称作定理.)定理1若点P在椭圆(x~2)/(a~2) (y~2)/(b~2)=1(a>0,  相似文献   

15.
性质1 已知椭圆(x2)/(a2) (y2)/(b2)=1(a>0,b>0)(包括圆在内)上有一点P,过P分别引直线y=(b)/(a)x及y=-(b)/(a)x的平行线,分别交x轴于M,N,交y轴于R,Q,O为原点,则:  相似文献   

16.
代银 《中学教研》2006,(12):38-39
文献[1]给出了双曲线平行弦的2个优美性质:性质1过双曲线ax22-yb22=1(a>0,b>0)顶点A的弦AQ交y轴于点R,过双曲线中心O的半弦OP与AQ平行,则|OP|2=21|AR|·|AQ|.性质2MN是过双曲线x2a2-by22=1(a>0,b>0)焦点F的弦,过双曲线中心O的半弦OP与MN平行,则|OP|2=2a|MN|.在此基础上,笔者对椭圆与抛物线的平行弦做了探究,有些结论令人惊喜.图1定理1如图1,过椭圆x2a2+yb22=1(a>b>0)顶点A的弦AQ交y轴于点R,过椭圆中心O的半弦OP与AQ平行,则|OP|2=21|AR|·|AQ|.证明设OP的参数方程为x=tcosα;y=tsinα,(α为倾斜角,t为参数)将x,y代入椭圆方…  相似文献   

17.
文[1]给出了如下性质1:已知直线l是圆锥曲线的焦点F对应的准线,过l上一点P作曲线的两条切线PA,PB,A、B为切点,则直线AB过焦点F.事实上,此处并不局限于焦点,可推广为焦点所在直线上任意一点.即有结论1如图1,已知椭圆(x~2)/(a~2)+(y~2)/(b~2)=1,在直线x=(a~2)/m(m≠0)上任取一点P(在椭圆外),作椭圆的两条切线  相似文献   

18.
本讲主要涉及向量与圆锥曲线之间的关系的一类竞赛问题. 例1 已知椭圆T:(x2)/(a2)+(y2)/(b2)=1(a>b>0)和双曲线S:(x2)/(m2)+(y2)/(n2)=1(m>0, n>0)具有相同的焦点F(2,0).设双曲线S经过第一象限的渐近线为l.若焦点F和椭圆T上方的顶点B关于l的对称点都在双曲线S上,求椭圆T和双曲线S的方程.  相似文献   

19.
文[1]定义了椭圆的切准点:椭圆(x~2)/(a~2)+(y~2)/(b~2)=1(a>b>0)上点M(x_0,y_0)(除长轴两顶点)处的切线l交右准线l_2:x=(a~2)/c于P,交左准线l_1:x=-(a~2)/c于Q,则点P,Q为椭圆的切准点.笔者  相似文献   

20.
文[1]给出了双曲线平行弦的两个优美性质:性质1:过双曲线ax22-yb22=1(a>0,b>0)的顶点A的弦AQ交y轴于点R,过双曲线中心O的半弦OP∥AQ,则|OP|2=21|AR|·|AQ|.性质2:MN是过双曲线xa22-by22=1(a>0,b>0)的焦点F的弦,过双曲线中心O的半弦OP∥MN,则|OP|2=2a|MN|.在其基础上,笔者对椭圆  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号