首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
高中《数学》(试验修订本·必修)第二册(上)第11页习题6.2第1题是:求证:(a2+b)2≤a22+b2.将上述不等式变形可得a2+b2≥(a+2b)2.(*)不等式(*)可利用均值不等式直接证明,也可借助恒等式2(a2+b2)=(a+b)2+(a-b)2及(a-b)2≥0证明.不等式(*)有着广泛的使用价值,本文略举数例加以说明.一、证明不等式【例1】设c是直角三角形的斜边,a、b是两条直角边,求证:a+b≤2c.证明:由题设得a2+b2=c2,由不等式(*)得c2=a2+b2≥(a+2b)2,即(a+b)2≤2c2,亦即a+b≤2c.【例2】己知a、b∈R+,且a+b=1,求证:a+21+b+21≤2.证明:由不等式(*)及已知有2=(a+21)+(b+21)≥(a+21…  相似文献   

2.
<正> 本文给出一个条件不等式的10种证法,从中可以看出条件不等式证明的一些常用思想方法.同时给出几个常见结论及其推广.已知:a、b、c是正数且a+b+c=1,求证:a2+b2+c2≥1/3.思路1 这是一个对称不等式,取等号的条件应为a=b=c=  相似文献   

3.
(2021奥地利数学奥林匹克不等式)已知a,b,c∈R+,a+b+c=1,求证:a/2a+1+b/3b+1+c/6c+1≤1/2(1).本文拟对不等式(1)的证明方法、变式、推广等方面作一探究.1.不等式(1)的证法分析1:不等式(1)的左端每一项的结构相同,但遗憾的是分母的系数不等,注意到每一项的特点,因此可通过证明局部不等式,再叠加.  相似文献   

4.
构造向量巧证不等式   总被引:1,自引:0,他引:1  
向量是高中教材的新增内容 ,作为现代数学重要标志之一的向量引入中学数学后 ,给中学数学带来无限生机。笔者在阅读文 [1 ]发现 ,该文所举的各个例子 ,均可通过构造向量 ,利用向量不等式 :m·n≤ |m|·|n|( )轻松获证 ,显示了向量在证明不等式时的独特威力。例 1 已知a、b、c∈R ,且a +2b +3c=6,求证a2+2b2 +3c2 ≥ 6。证明 构造向量 :m =(a ,2b ,3c) ,n =( 1 ,2 ,3 ) ,由向量不等式 ( )得6=a +2b +3c≤a2 +2b2 +3c2 · 1 +2 +3 ,∴a2 +2b2 +3c2 ≥ 6。例 2 已知 :a、b∈R+ ,且a +b =1 ,求证(a +1a) 2 +(b +1b) 2 ≥2 52 。证明 构造…  相似文献   

5.
问题 1 《数学教学》2 0 0 3年第 2期“数学问题与解答”栏目中的第 5 80题为设a、b、c为△ABC的三边 ,求证 :a2a +b -c+b2b +c -a+c2c+a -b≥ 32 .①笔者试图探索这个新颖不等式的上界 ,得出问题 1 .1 设a ,b,c为△ABC的三边 ,求证 :a2a +b -c+b2b +c -a+c2c+a -b<73 .②综合不等式①、②得问题 1 .2 设a ,b,c为△ABC的三边 ,求证 :32 ≤ a2a +b -c+b2b +c -a+c2c+a -b<73 .③为了证明不等式③ ,笔者首先想到了它的类似 :问题 1 .3 设x ,y ,z为任意正实数 ,求证 :xy +z+yz +x+zx +y≥ 32 .④于是 ,联想到 :能否将不等式③转化为三…  相似文献   

6.
<正>《数学通报》2014年9月号问题2201如下:问题2201[1]已知a、b、c∈R+,且满足a2/1+a2+b2/1+b2+c2/1+c2=1,求证:abc≤2/4.本文从变元的个数与指数出发,利用均值不等式给出上述条件不等式的一个推广.推广已知n∈N+,n≥2,k∈N+,ai∈n  相似文献   

7.
在《数学教学》2 0 0 1年第 6期数学问题栏的第 548题为 :问题 1 设△ ABC的三边长为 a,b,c,求证 :b+ c- aa + c+ a- bb +a+ b- cc >2 2 . ( 1 )《中学数学月刊》在 2 0 0 2年第 1 1期第2 9页上用换元法给出了此题又一简捷证法 ,笔者想到的是 ( 1 )的一个类似不等式 .问题 2 在△ABC中 ,三边长为 a,b,c,求证 :c+ a- ca + a+ b- cb + b+ c- ac ≤ 3.( 2 )证明 采用化分式为整式、化无理为有理进行逐步转化 .c+ a- ba + a+ b- cb + b+ c- ac ≤ 3 bc( c+ a- b) + ca( a+ b- c) +ab( b+ c- a)≤ 3abc [bc( c+ a- b) + ca( a+ b- c) +ab(…  相似文献   

8.
先看下面的一个公式:设ai∈R,bi∈R+,i=1,2,…,n.则a21b1+a22b2+…+a2nbn≥(a1+a2+…+an)2b1+b2+…+bn.这个公式是由柯西不等式稍加变形后得到的,用它处理一类分式不等式问题十分方便.下面举例说明.例1已知a、b、c∈R+.求证:ab+c+bc+a+ca+b≥32.(第26届莫斯科数学奥林匹克)证明:ab+c+bc+a+ca+b=a2a(b+c)+b2b(c+a)+c2c(a+b)≥(a+b+c)22(ab+bc+ca)≥3(ab+bc+ca)2(ab+bc+ca)=32.例2设a、b、c∈R+,且abc=1.则1a3(b+c)+1b3(c+a)+1c3(a+b)≥32.(第26届IMO)证明:1a3(b+c)+1b3(c+a)+1c3(a+b)=a2b2c2a3(b+c)+a2b2c2b3(c+a)+a2b2c2c3(a+b)=b2c2a(b+…  相似文献   

9.
正引言文[1]—[4]研究了如下几个有意思的不等式:问题1已知a,b,c为正实数,求证:(a2+b2)2≥(a+b+c)(a+b-c)(b+c-a)(c+a-b).问题2已知a,b,c为正实数,求证:(ab)2≥1/4(a+b+c)(a+b-c)(b+c-a))c+a-b).问题3若a,b,c为正实数,且满足a+b+c=3,求证:(3/a-2)(3/b-2)(3/c-2)≤1.  相似文献   

10.
错在哪里     
王庆 《中学数学教学》2020,(1):F0003-F0003
题目已知实数a,b,c满足a+b+c=1,a 2+b 2+c 2=3,则c的取值范围是.解答∵a+b+c=1,∴a+b=1-c,又∵a 2+b 2+c 2=3,∴a 2+b 2=3-c 2.根据均值不等式a+b 2≤a 2+b 22得1-c 2≤3-c 22,且该均值不等式成立的条件:a、b∈R,等号成立条件:a=0,b≥0或a≥0,b=0或a=b>0.解不等式1-c 2≤3-c 22得:1-c≤0,3-c 2≥0,或1-c>0,3-c 2≥0,()2≤3-c 22,∴1≤c≤3或-1≤c<1,综上可得:-1≤c≤3.  相似文献   

11.
文[1]-[4]研究了如下几个有意思的不等式: 问题1:已知a,b,c为正实数,求证:(a2+ b2)2≥(a+b+c)(a+b-c)(b+c-a)(c+a-b) 问题2:已知a,b,c为正实数,求证:(ab)2≥1/4(a+b+c)(a+ b-c)(b+c-a)(c+a-b) 问题3:若a,b,c为正实数,且满足a+b+c=3,求证:(3/a-2)(3/b-2)(3/c-2)≤1.  相似文献   

12.
一、等式与不等式的转化例1若正数a,b满足ab=a+b+3,则ab的取值范围是______.分析为了求ab的取值范围,只要将原等式转化为不等式即可.解运用不等式a+b≥2ab姨,原等式可化为不等式.∵ab=a+b+3≥2ab姨+3,∴ab-2ab姨-3≥0.又ab姨>0,∴ab姨≥3,即ab≥9.例2已知不等式a2+b2+c2+4≤ab+3b+2c,求正整数a,b,c.分析本题所给的是不等式,而求的是a,b,c,故应将原不等式转化为3个等式,才能解决问题.解∵不等式的两边是整数,∴将a2+b2+c2+4≤ab+3b+2c配方得(a-b2)2+3(b2-1)2+(c-1)2≤0.则有a-b2=0,b2-1=0,c-1=0,∴原不等式有唯一的一组解a=1,b=2,c=1.二、常…  相似文献   

13.
略谈一个不等式的应用   总被引:1,自引:0,他引:1  
设 x,y为正实数 ,则由均值不等式得(x y) 3=(12 x 12 x y) 3≥ (3·314x2 y) 3=2 74x2 y.∴ (x y) 3 ≥ 2 74x2 y(* ) ,当且仅当 y=12 x时不等式取等号 .不等式 (* )形式简单 ,但在不等式证明中往往有独到的作用 ,下面举例说明之 .例 1 已知 a,b,c∈R .求证 :(a 1 ) 3b (b 1 ) 3c (c 1 ) 3a ≥ 814.(《中等数学》2 0 0 0年第 4期数学奥林匹克问题 91 )证明 由 (* )式得(a 1 ) 3≥ 2 74a,(b 1 ) 3≥ 2 74b,(c 1 ) 3≥ 2 74c,∴ (a 1 ) 3b (b 1 ) 3c (c 1 ) 3a ≥ 2 74(ab bc ca)≥ 2 74· 3·3ab· bc· ca=814.例 2 已知实数 a>1 ,b…  相似文献   

14.
赛题呈现 已知a,b,c是正实数,求证:a3/c(a2 + bc) +b3/a(b2 + ca) + c3/b(c2 + ab)≥ 3/2. 这是2009年韩国数学奥林匹克竞赛的一道不等式证明题,文[1]给出了这道试题的一个证明和推广.笔者对这个结构优美、内涵丰富的齐次分式不等式再作进一步探究,供参考.  相似文献   

15.
观察下面三个问题 :( 1 )设a、b、c为△ABC的三边 .求证 :a2 b(a -b) +b2 c(b -c) +c2 a(c-a)≥ 0 .①(第 2 4届IMO)( 2 )若x、y、z∈R+,则x·x +yx +z+y·y +zy +x+z·z+xz+y≥x +y +z.②( 1 992 ,国际“友谊杯”数学邀请赛 )( 3)设x、y、z∈R+,求证 :x2 ·y +zy +x+y2 ·z+xz+y+z2 ·x +yx +z≥xy +yz+zx .③这三个不等式均不难证明 ,此处从略 .今将揭示他们之间隐含的内在联系 .1 .建立对应关系 ,揭示①可转化为②众所周知 ,对于任意△ABC的三边a、b、c,总可找到这样的正数x、y、z,使得a =y +z,b =z+x ,c =x +y .于是 ,式①化为(y+z…  相似文献   

16.
不胜惊奇     
谢小兴 《高中生》2010,(33):28-28
题目已知a,b,c是正数且a+b+c=1,求证:a2+b2+c2≥1/3.思路1根据观察我们知道,要证不等式是一个对称不等式,取等号的条件应为a=b=c=1/3.这是探求对称不等式证法的常用思路.  相似文献   

17.
《数学教学通讯》2001年第10期刊发的一篇文章[1]中利用均值不等式巧妙地证明了一类条件不等式.本文借用这篇文章中的例子进一步探讨这类条件不等式的统一背景. 例 1 已知 a,b∈R~+,a+b=1,求证: (1)a2十b2≥1/2;(2)a3十b3≥1/4. 该例中的第(1)个不等式的背景是 2(a2十b2)≥(a十b)2,①不等式(1)只不过是当a+b=1时的特殊情形.显然不等式①对任意实数a和b都是成立的,因此对不等式(1)就没有必要限制a和b为正实数. 不等式①应该说是中学数学里常见的基本不等式之一,在此没有必要给出它的证明.不  相似文献   

18.
2013年OlympicRevenge 第3题为: 已知a,b,c,d是满足ab+ ac+ad+ bc+ bd+ cd =6的正数,求证:1/a2+1+1/b2+1+1/c2+1+1/d2+1≥2.(1) 文[1]退化思考得到 命题4 已知a,b,c是满足ab+bc+ca =3的正数,求证:1/a2+1+1/b2+1+1/c2+1≥3/2.(2) 在(2)式中令a=√tanA/2,b=√3tanB/2,c=√3tanC/2,则命题4可变为:  相似文献   

19.
<正> 不等式问题与函数问题有着密切的联系,许多不等式问题可以通过构造函数,利用函数的性质获得解决. 例1 已知a、b∈R,且a+b+1=0,求证: (a-2)2+(b-3)2≥18. 分析若把不等式的左端看成关于a,b的二元函数,问题的实  相似文献   

20.
不等式证明既是高中数学的重点,也是高中数学的难点。化归函数法、放缩法是技巧性较高的不等式证明方法.一、化归函数法例1、已知a,b,c,d∈R,且a2+b2=1,c2+d2=1求证:-14FabcdF41分析:将已条件与sin2α+cos2α=1进行对照,可知本题能通过换元将原不等式问题转化为三角函数求值域的问题来解决.证明:设a=sinα,b=cosα,c=sinβ,d=cosβ]|abcd|=|sinα·cosα·sinβ·cosβ|=14|sin2α·sin2β|F14|sin2α|·|sin2β|F41]-14FabcdF41例2、求证:|a|+|b|1+|a|+|b|E1+|a|+a+b|b|分析:认真观察原不等式两边,不难发现它们…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号